Relabel wave number with kappa + other fixes
Former-commit-id: e005aa094418e3a1cc80ec88768dfd4e9300acca
This commit is contained in:
parent
56180ec86b
commit
095525337d
|
@ -485,9 +485,19 @@ These are compatibility macros for the (...)-old files:
|
|||
\end_inset
|
||||
|
||||
-matrix simulations in finite and infinite systems of electromagnetic scatterers
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO better title)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -776,10 +786,6 @@ Truncation notation.
|
|||
Example results and benchmarks with BEM; figures!
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Fix and unify notation (mainly indices) in infinite lattices section.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Carefully check the transformation directions in sec.
|
||||
|
||||
|
|
|
@ -104,10 +104,6 @@ name "sec:Finite"
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Motivation/intro
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
||||
incident onto a scatterer is expanded into a vector spherical wavefunction
|
||||
|
@ -127,8 +123,8 @@ The expressions appearing in the re-expansions are fairly complicated, and
|
|||
the implementation of MSTMM is extremely error-prone also due to the various
|
||||
conventions used in the literature.
|
||||
Therefore although we do not re-derive from scratch the expressions that
|
||||
can be found elsewhere in literature, we always state them explicitly in
|
||||
our convention.
|
||||
can be found elsewhere in literature, for reader's reference we always
|
||||
state them explicitly in our convention.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -137,7 +133,7 @@ Single-particle scattering
|
|||
|
||||
\begin_layout Standard
|
||||
In order to define the basic concepts, let us first consider the case of
|
||||
EM radiation scattered by a single particle.
|
||||
electromagnetic (EM) radiation scattered by a single particle.
|
||||
We assume that the scatterer lies inside a closed ball
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
@ -156,17 +152,7 @@ In order to define the basic concepts, let us first consider the case of
|
|||
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
, such that
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Is there a word for this?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
the (non-empty) volume
|
||||
, such that the (non-empty) spherical shell
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
|
@ -187,14 +173,14 @@ ty
|
|||
\end_inset
|
||||
|
||||
in
|
||||
\begin_inset Formula $\medium$
|
||||
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
must satisfy the homogeneous vector Helmholtz equation together with the
|
||||
transversality condition
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
|
||||
\left(\nabla^{2}+\kappa^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -233,19 +219,27 @@ todo define
|
|||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $k=k\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
||||
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
||||
\end_inset
|
||||
|
||||
, as can be derived from the Maxwell's equations
|
||||
, as can be derived from Maxwell's equations
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "???"
|
||||
key "jackson_classical_1998"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO ref to the chapter.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
|
@ -284,8 +278,8 @@ outgoing
|
|||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -294,7 +288,7 @@ outgoing
|
|||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||
\end{align}
|
||||
|
||||
|
@ -494,7 +488,7 @@ noprefix "false"
|
|||
|
||||
around the origin (typically due to presence of a scatterer), one has to
|
||||
add the outgoing VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
|
@ -528,7 +522,7 @@ The single-particle scattering problem at frequency
|
|||
\end_inset
|
||||
|
||||
be filled with a homogeneous isotropic medium with wave number
|
||||
\begin_inset Formula $k\left(\omega\right)$
|
||||
\begin_inset Formula $\kappa\left(\omega\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -549,16 +543,16 @@ doplnit frekvence a polohy
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(k\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(k\vect r\right)\right).\label{eq:E field expansion}
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\vect r\right)\right).\label{eq:E field expansion}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
If there was no scatterer and
|
||||
If there were no scatterer and
|
||||
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
|
||||
\end_inset
|
||||
|
||||
was filled with the same homogeneous medium, the part with the outgoing
|
||||
were filled with the same homogeneous medium, the part with the outgoing
|
||||
VSWFs would vanish and only the part
|
||||
\begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
@ -585,8 +579,8 @@ driving field
|
|||
\end_inset
|
||||
|
||||
.
|
||||
We also assume that the scatterer is made of optically linear materials,
|
||||
and hence reacts on the incident field in a linear manner.
|
||||
We also assume that the scatterer is made of optically linear materials
|
||||
and hence reacts to the incident field in a linear manner.
|
||||
This gives a linearity constraint between the expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
|
@ -614,8 +608,8 @@ transition matrix,
|
|||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, we can solve the single-patricle scatering prroblem simply by substitut
|
||||
ing appropriate expansion coefficients
|
||||
-matrix we can solve the single-patricle scatering prroblem simply by substituti
|
||||
ng appropriate expansion coefficients
|
||||
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
||||
\end_inset
|
||||
|
||||
|
@ -643,8 +637,8 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
) multipole polarisation amplitudes of the scatterer, and this is why we
|
||||
sometimes refer to the corresponding VSWFs as the electric and magnetic
|
||||
VSWFs.
|
||||
sometimes refer to the corresponding VSWFs as to the electric and magnetic
|
||||
VSWFs, respectively.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -705,8 +699,12 @@ literal "false"
|
|||
\end_inset
|
||||
|
||||
, see below.
|
||||
We typically use the scuff-tmatrix tool from the free software SCUFF-EM
|
||||
suite
|
||||
For the numerical evaluation of
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices we typically use the scuff-tmatrix tool from the free software
|
||||
SCUFF-EM suite
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "reid_efficient_2015,SCUFF2"
|
||||
|
@ -979,7 +977,7 @@ noprefix "false"
|
|||
via by electromagnetic radiation is
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -1001,9 +999,9 @@ Plane wave expansion
|
|||
|
||||
\begin_layout Standard
|
||||
In many scattering problems considered in practice, the driving field is
|
||||
a plane wave.
|
||||
at least approximately a plane wave.
|
||||
A transversal (
|
||||
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
|
||||
\begin_inset Formula $\uvec k\cdot\vect E_{0}=0$
|
||||
\end_inset
|
||||
|
||||
) plane wave propagating in direction
|
||||
|
@ -1017,7 +1015,7 @@ In many scattering problems considered in practice, the driving field is
|
|||
can be expanded into regular VSWFs
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "7.???"
|
||||
after "7.7.1"
|
||||
key "kristensson_scattering_2016"
|
||||
literal "false"
|
||||
|
||||
|
@ -1026,7 +1024,7 @@ literal "false"
|
|||
as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
|
||||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{i\kappa\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\uvec k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(\kappa\vect r\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1034,8 +1032,8 @@ literal "false"
|
|||
with expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\rcoeffptlm{}1lm\left(\uvec k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\uvec k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -1113,10 +1111,10 @@ literal "true"
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||||
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -1163,7 +1161,7 @@ If the system consists of multiple scatterers, the EM fields around each
|
|||
\begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}\cap\closedball{R_{q}}{\vect r_{q}}=\emptyset;p,q\in\mathcal{P}$
|
||||
\end_inset
|
||||
|
||||
, so there is a non-empty volume
|
||||
, so there is a non-empty spherical shell
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -1178,11 +1176,11 @@ jaksetometuje?
|
|||
\end_inset
|
||||
|
||||
around each one that contains only the background medium without any scatterers
|
||||
(we assume that all the volume outside
|
||||
; we assume that all the relevant volume outside
|
||||
\begin_inset Formula $\bigcap_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$
|
||||
\end_inset
|
||||
|
||||
is filled with the same background medium).
|
||||
is filled with the same background medium.
|
||||
Then the EM field inside each
|
||||
\begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$
|
||||
\end_inset
|
||||
|
@ -1200,7 +1198,7 @@ noprefix "false"
|
|||
, using VSWFs with origins shifted to the centre of the volume:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\
|
||||
\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\
|
||||
& \vect r\in\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}.\nonumber
|
||||
\end{align}
|
||||
|
||||
|
@ -1362,7 +1360,7 @@ In practice, the multiple-scattering problem is solved in its truncated
|
|||
-multiindices left.
|
||||
The truncation degree can vary for different scatterers (e.g.
|
||||
due to different physical sizes), so the truncated block
|
||||
\begin_inset Formula $\tropsp pq$
|
||||
\begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$
|
||||
\end_inset
|
||||
|
||||
has shape
|
||||
|
@ -1493,7 +1491,7 @@ Let
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
||||
\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -1519,9 +1517,9 @@ reference "eq:translation operator"
|
|||
:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||||
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||||
\end{cases},\label{eq:singular vswf translation}
|
||||
\end{eqnarray}
|
||||
|
||||
|
@ -1590,7 +1588,7 @@ they
|
|||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right).
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1613,7 +1611,7 @@ reference "eq:regular vswf translation"
|
|||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1625,7 +1623,7 @@ and comparing to the original expansion around
|
|||
, we obtain
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
||||
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -2066,7 +2064,7 @@ literal "false"
|
|||
, we can describe the EM fields as if there was only a single scatterer,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right),
|
||||
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -2252,10 +2250,10 @@ noprefix "false"
|
|||
cross sections suitable for numerical evaluation:
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\
|
||||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
||||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||||
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\
|
||||
\label{eq:absorption CS multi}
|
||||
\end{eqnarray}
|
||||
|
||||
|
@ -2321,7 +2319,7 @@ noprefix "false"
|
|||
particle-wise gives
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -2349,8 +2347,8 @@ noprefix "false"
|
|||
, we can rewrite it as
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
||||
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
||||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
||||
& =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -605,7 +605,7 @@ reference "eq:W definition"
|
|||
\end_inset
|
||||
|
||||
is the asymptotic behaviour of the translation operator,
|
||||
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$
|
||||
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$
|
||||
\end_inset
|
||||
|
||||
that does not in the strict sense converge for any
|
||||
|
@ -831,8 +831,8 @@ Check sign of s
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{k^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||
+\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||
+\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
@ -861,26 +861,6 @@ Poznámka ohledně zahození radiální části u kulových fcí?
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
N.B.
|
||||
here
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
is the Bloch vector while
|
||||
\begin_inset Formula $k$
|
||||
\end_inset
|
||||
|
||||
is the wavenumber.
|
||||
Relabel to make this distinction clear.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
The long-range part for cases
|
||||
\begin_inset Formula $d=1,2$
|
||||
\end_inset
|
||||
|
@ -902,8 +882,8 @@ check sign of
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{k^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/k\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/k\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/k\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
@ -915,7 +895,7 @@ and for
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{k\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/k\right)^{l}}{k^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(k^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -107,7 +107,16 @@ name "sec:Introduction"
|
|||
\begin_layout Standard
|
||||
The problem of electromagnetic response of a system consisting of many relativel
|
||||
y small, compact scatterers in various geometries, and its numerical solution,
|
||||
is relevant to many branches of nanophotonics (TODO refs).
|
||||
is relevant to many branches of nanophotonics.
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Some refs here?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
The most commonly used general approaches used in computational electrodynamics
|
||||
are often unsuitable for simulating systems with larger number of scatterers
|
||||
due to their computational complexity: differential methods such as the
|
||||
|
@ -118,7 +127,7 @@ y small, compact scatterers in various geometries, and its numerical solution,
|
|||
with dense matrices containing couplings between each pair of DoF.
|
||||
Therefore, a common (frequency-domain) approach to get an approximate solution
|
||||
of the scattering problem for many small particles has been the coupled
|
||||
dipole approximation (CDA) where drastic reduction of the number of DoF
|
||||
dipole approximation (CDA) where a drastic reduction of the number of DoF
|
||||
is achieved by approximating individual scatterers to electric dipoles
|
||||
(characterised by a polarisability tensor) coupled to each other through
|
||||
Green's functions.
|
||||
|
@ -133,8 +142,8 @@ CDA is easy to implement and demands relatively little computational resources
|
|||
to quantitative errors.
|
||||
The other one, more subtle, manifests itself in photonic crystal-like structure
|
||||
s used in nanophotonics: there are modes in which the particles' electric
|
||||
dipole moments completely vanish due to symmetry, regardless of how small
|
||||
the particles are, and the excitations have quadrupolar or higher-degree
|
||||
dipole moments completely vanish due to symmetry, and regardless of how
|
||||
small the particles are, the excitations have quadrupolar or higher-degree
|
||||
multipolar character.
|
||||
These modes typically appear at the band edges where interesting phenomena
|
||||
such as lasing or Bose-Einstein condensation have been observed
|
||||
|
@ -152,13 +161,13 @@ literal "false"
|
|||
The natural way to overcome both limitations of CDA mentioned above is to
|
||||
include higher multipoles into account.
|
||||
Instead of polarisability tensor, the scattering properties of an individual
|
||||
particle are then described a more general
|
||||
particle are then described with more general
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, and different particles' multipole excitations are coupled together
|
||||
via translation operators, a generalisation of the Green's functions in
|
||||
CDA.
|
||||
via translation operators, a generalisation of the Green's functions used
|
||||
in CDA.
|
||||
This is the idea behind the
|
||||
\emph on
|
||||
multiple-scattering
|
||||
|
@ -227,8 +236,8 @@ literal "false"
|
|||
During the process, it became apparent that although the size of the arrays
|
||||
we were able to simulate with MSTMM was far larger than with other methods,
|
||||
sometimes we were unable to match the full size of our physical arrays
|
||||
(typically consisting of tens of thousands of metallic nanoparticles) due
|
||||
to memory constraints.
|
||||
(typically consisting of tens of thousands of metallic nanoparticles) mainly
|
||||
due to memory constraints.
|
||||
Moreover, to distinguish the effects attributable to the finite size of
|
||||
the arrays, it became desirable to simulate also
|
||||
\emph on
|
||||
|
@ -247,7 +256,7 @@ Here we address both challenges: we extend the method on infinite periodic
|
|||
of the system to decompose the problem into several substantially smaller
|
||||
ones, which 1) reduces the demands on computational resources, hence speeds
|
||||
up the computations and allows for simulations of larger systems, and 2)
|
||||
provides better understanding of modes in periodic systems.
|
||||
provides better understanding of modes, mainly in periodic systems.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -273,8 +282,8 @@ TODO refs to the code repositories once it is published.
|
|||
s.
|
||||
Moreover, it includes the improvements covered in this paper, enabling
|
||||
to simulate even larger systems and also infinite structures with periodicity
|
||||
in one, two or three dimensions, which can be e.g.
|
||||
used for quickly evaluating dispersions of such structures
|
||||
in one, two or three dimensions, which can be used e.g.
|
||||
for quickly evaluating dispersions of such structures
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -327,7 +336,7 @@ reference "sec:Infinite"
|
|||
\end_inset
|
||||
|
||||
we develop the theory for infinite periodic structures.
|
||||
In section
|
||||
In Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Symmetries"
|
||||
|
@ -339,7 +348,7 @@ noprefix "false"
|
|||
|
||||
we apply group theory on MSTMM to utilise the symmetries of the simulated
|
||||
system.
|
||||
Finally, section
|
||||
Finally, Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Applications"
|
||||
|
|
|
@ -473,7 +473,7 @@ noprefix "false"
|
|||
of the electric field around origin in a rotated/reflected system,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\vect r\right)\right),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -595,8 +595,8 @@ Check this carefully.
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
@ -750,12 +750,12 @@ With these transformation properties in hand, we can proceed to the effects
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)\right)
|
||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{\pi_{g}p}\right)\right)\right)\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right.\\
|
||||
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}q}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue