hexlaser tmatrixtest continue

Former-commit-id: 772c718caa1e9fbae56b1eb9bb34eb2d710fcefc
This commit is contained in:
Marek Nečada 2018-09-25 09:09:43 +03:00
parent e9a2fe69ff
commit 19dce993de
1 changed files with 55 additions and 13 deletions

View File

@ -104,12 +104,22 @@
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\coeffsi}[3]{a_{#1,#2}^{#3}} \newcommand{\coeffs}{a}
\end_inset \end_inset
\begin_inset FormulaMacro \begin_inset FormulaMacro
\newcommand{\coeffsip}[4]{a_{#1}^{#2,#3,#4}} \newcommand{\coeffsi}[3]{\coeffs_{#1,#2}^{#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffr}{p}
\end_inset \end_inset
@ -123,6 +133,11 @@
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\transop}{S}
\end_inset
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -134,9 +149,9 @@ In this approach, scattering properties of single nanoparticles are first
-th nanoparticle from external sources can be expanded as -th nanoparticle from external sources can be expanded as
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right) \vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
\] \end{equation}
\end_inset \end_inset
@ -177,8 +192,9 @@ few words about different conventions?
\end_inset \end_inset
. .
On the other hand, the field scattered by the particle can be expanded On the other hand, the field scattered by the particle can be (outside
in terms of singular VSWFs the particle's circumscribing sphere) expanded in terms of singular VSWFs
\begin_inset Formula $\svwfs lmt$ \begin_inset Formula $\svwfs lmt$
\end_inset \end_inset
@ -189,9 +205,9 @@ few words about different conventions?
, ,
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right). \vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
\] \end{equation}
\end_inset \end_inset
@ -217,9 +233,9 @@ At a given frequency, assuming the system is linear, the relation between
-matrix, -matrix,
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\coeffsip nlmt=\sum_{l,m,t}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}. \coeffsip nlmt=\sum_{l',m',t'}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
\] \end{equation}
\end_inset \end_inset
@ -241,6 +257,32 @@ th nanoparticles) its elements drop very quickly to negligible values with
\end_inset \end_inset
. .
The
\begin_inset Formula $T$
\end_inset
-matrix can be calculated numerically using various methods; here we used
the scuff-tmatrix tool from the SCUFF-EM suite [REF].
\end_layout
\begin_layout Standard
The singular SVWFs originating at
\begin_inset Formula $\vect R_{n}$
\end_inset
can be then re-expanded around another origin (nanoparticle location)
\begin_inset Formula $\vect R_{n'}$
\end_inset
in terms of regular SVWFs,
\begin_inset Formula
\[
\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}
\]
\end_inset
\end_layout \end_layout
\end_body \end_body