hexlaser tmatrixtest continue
Former-commit-id: 772c718caa1e9fbae56b1eb9bb34eb2d710fcefc
This commit is contained in:
parent
e9a2fe69ff
commit
19dce993de
|
@ -104,12 +104,22 @@
|
||||||
|
|
||||||
|
|
||||||
\begin_inset FormulaMacro
|
\begin_inset FormulaMacro
|
||||||
\newcommand{\coeffsi}[3]{a_{#1,#2}^{#3}}
|
\newcommand{\coeffs}{a}
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\begin_inset FormulaMacro
|
\begin_inset FormulaMacro
|
||||||
\newcommand{\coeffsip}[4]{a_{#1}^{#2,#3,#4}}
|
\newcommand{\coeffsi}[3]{\coeffs_{#1,#2}^{#3}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\coeffr}{p}
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
@ -123,6 +133,11 @@
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\transop}{S}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -134,9 +149,9 @@ In this approach, scattering properties of single nanoparticles are first
|
||||||
|
|
||||||
-th nanoparticle from external sources can be expanded as
|
-th nanoparticle from external sources can be expanded as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)
|
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -177,8 +192,9 @@ few words about different conventions?
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
On the other hand, the field scattered by the particle can be expanded
|
On the other hand, the field scattered by the particle can be (outside
|
||||||
in terms of singular VSWFs
|
the particle's circumscribing sphere) expanded in terms of singular VSWFs
|
||||||
|
|
||||||
\begin_inset Formula $\svwfs lmt$
|
\begin_inset Formula $\svwfs lmt$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -189,9 +205,9 @@ few words about different conventions?
|
||||||
|
|
||||||
,
|
,
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
\vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right).
|
\vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -217,9 +233,9 @@ At a given frequency, assuming the system is linear, the relation between
|
||||||
|
|
||||||
-matrix,
|
-matrix,
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
\coeffsip nlmt=\sum_{l,m,t}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}.
|
\coeffsip nlmt=\sum_{l',m',t'}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -241,6 +257,32 @@ th nanoparticles) its elements drop very quickly to negligible values with
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
The
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix can be calculated numerically using various methods; here we used
|
||||||
|
the scuff-tmatrix tool from the SCUFF-EM suite [REF].
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The singular SVWFs originating at
|
||||||
|
\begin_inset Formula $\vect R_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be then re-expanded around another origin (nanoparticle location)
|
||||||
|
\begin_inset Formula $\vect R_{n'}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in terms of regular SVWFs,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_body
|
\end_body
|
||||||
|
|
Loading…
Reference in New Issue