hexlaser tmatrixtest begin
Former-commit-id: 447f43d9535318021948783cf086ceb1847b7469
This commit is contained in:
parent
798c69de44
commit
e9a2fe69ff
|
@ -0,0 +1,247 @@
|
|||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language_package default
|
||||
\inputencoding auto
|
||||
\fontencoding global
|
||||
\font_roman TeX Gyre Pagella
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts true
|
||||
\font_sc false
|
||||
\font_osf true
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
\graphics default
|
||||
\default_output_format pdf4
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\spacing single
|
||||
\use_hyperref true
|
||||
\pdf_title "Sähköpajan päiväkirja"
|
||||
\pdf_author "Marek Nečada"
|
||||
\pdf_bookmarks true
|
||||
\pdf_bookmarksnumbered false
|
||||
\pdf_bookmarksopen false
|
||||
\pdf_bookmarksopenlevel 1
|
||||
\pdf_breaklinks false
|
||||
\pdf_pdfborder false
|
||||
\pdf_colorlinks false
|
||||
\pdf_backref false
|
||||
\pdf_pdfusetitle true
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\quotes_language swedish
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vect}[1]{\mathbf{#1}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\svwfr}[3]{\mathbf{u}_{#1,#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\svwfs}[3]{\mathbf{v}_{#1,#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffsi}[3]{a_{#1,#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffsip}[4]{a_{#1}^{#2,#3,#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffri}[3]{p_{#1,#2}^{#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\coeffrip}[4]{p_{#1}^{#2,#3,#4}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In this approach, scattering properties of single nanoparticles are first
|
||||
computed in terms of vector sperical wavefunctions (VSWFs)—the field incident
|
||||
onto the
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-th nanoparticle from external sources can be expanded as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\svwfr lmt\left(\vect r_{n}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\vect R_{n}$
|
||||
\end_inset
|
||||
|
||||
being the position of the centre of
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
-th nanoparticle and
|
||||
\begin_inset Formula $\svwfr lmt$
|
||||
\end_inset
|
||||
|
||||
are the regular VSWFs which can be expressed in terms of regular spherical
|
||||
Bessel functions of
|
||||
\begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$
|
||||
\end_inset
|
||||
|
||||
and spherical harmonics
|
||||
\begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$
|
||||
\end_inset
|
||||
|
||||
; the expressions can be found e.g.
|
||||
in REF
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
few words about different conventions?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
On the other hand, the field scattered by the particle can be expanded
|
||||
in terms of singular VSWFs
|
||||
\begin_inset Formula $\svwfs lmt$
|
||||
\end_inset
|
||||
|
||||
which differ from the regular ones by regular spherical Bessel functions
|
||||
being replaced with spherical Hankel functions
|
||||
\begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E_{n}^{\mathrm{scat}}=\sum_{l,m,t}\coeffsip nlmt\svwfs lmt\left(\vect r_{n}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The expansion coefficients
|
||||
\begin_inset Formula $\coeffsip nlmt$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $t=\mathrm{E},\mathrm{M}$
|
||||
\end_inset
|
||||
|
||||
are related to the electric and magnetic multipole polarisation amplitudes
|
||||
of the nanoparticle.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
At a given frequency, assuming the system is linear, the relation between
|
||||
the expansion coefficients in the VSWF bases is given by the so-called
|
||||
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\coeffsip nlmt=\sum_{l,m,t}T_{n}^{l,m,t;l',m',t'}\coeffrip n{l'}{m'}{t'}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix is given by the shape and composition of the particle and fully
|
||||
describes its scattering properties.
|
||||
In theory it is infinite-dimensional, but in practice (at least for subwaveleng
|
||||
th nanoparticles) its elements drop very quickly to negligible values with
|
||||
growing degree indices
|
||||
\begin_inset Formula $l,l'$
|
||||
\end_inset
|
||||
|
||||
, enabling to take into account only the elements up to some finite degree,
|
||||
|
||||
\begin_inset Formula $l,l'\le l_{\mathrm{max}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue