Implement some of Javier's notes.
Former-commit-id: 3881eccd2bbca4975d50c4a749751b7c134d6698
This commit is contained in:
parent
c70317dc25
commit
2a890c56ac
|
@ -481,7 +481,11 @@ The single-particle scattering problem at frequency
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Inside this volume, the electric field can be expanded as
|
||||
Inside
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
, the electric field can be expanded as
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -770,7 +774,7 @@ literal "false"
|
|||
|
||||
its (maximum) refractive index.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
|
@ -1281,7 +1285,7 @@ In practice, the multiple-scattering problem is solved in its truncated
|
|||
\begin_inset Formula $l\le L_{p}$
|
||||
\end_inset
|
||||
|
||||
, laeving only
|
||||
, leaving only
|
||||
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1428,11 +1432,7 @@ Let
|
|||
|
||||
\end_inset
|
||||
|
||||
where an explicit formula for the (regular)
|
||||
\emph on
|
||||
translation operator
|
||||
\emph default
|
||||
|
||||
where an explicit formula for the regular translation operator
|
||||
\begin_inset Formula $\tropr$
|
||||
\end_inset
|
||||
|
||||
|
@ -1547,7 +1547,7 @@ reference "eq:regular vswf translation"
|
|||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1579,7 +1579,12 @@ reference "eq:regular vswf coefficient translation"
|
|||
|
||||
\end_inset
|
||||
|
||||
(note the reversed indices; TODO redefine them in
|
||||
(note the reversed indices
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
; TODO redefine them in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
|
@ -1593,7 +1598,12 @@ reference "eq:singular vswf translation"
|
|||
|
||||
\end_inset
|
||||
|
||||
? Similarly, if we had only outgoing waves in the original expansion around
|
||||
?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
) Similarly, if we had only outgoing waves in the original expansion around
|
||||
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
|
|
@ -329,6 +329,16 @@ noprefix "false"
|
|||
|
||||
\begin_layout Standard
|
||||
As in the case of a finite system, eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
|
@ -526,7 +536,17 @@ noprefix "false"
|
|||
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
|
||||
\end_inset
|
||||
|
||||
(modulo lattice points; TODO write this a clean way).
|
||||
(modulo reciprocal lattice points
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO write this in a clean way
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
A somehow challenging step is to distinguish the different bands that can
|
||||
all be very close to the empty lattice approximation, especially if the
|
||||
particles in the systems are small.
|
||||
|
@ -687,7 +707,7 @@ translation operator for spherical waves originating in
|
|||
\end_inset
|
||||
|
||||
is in fact a function of a single 3d argument,
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -701,7 +721,7 @@ reference "eq:W integral"
|
|||
can be rewritten as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
|
||||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0))\left(\vect k\right)}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -735,10 +755,10 @@ reference "eq:Dirac comb uaFt"
|
|||
(REF?) for the Fourier transform of Dirac comb)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)(\vect k)\nonumber \\
|
||||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -840,8 +860,8 @@ reference "eq:W sum in reciprocal space"
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -879,7 +899,7 @@ CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -98,11 +98,11 @@ If the system has nontrivial point group symmetries, group theory gives
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As an example, if our system has a
|
||||
As an example, if the system has a
|
||||
\begin_inset Formula $D_{2h}$
|
||||
\end_inset
|
||||
|
||||
symmetry and our truncated
|
||||
symmetry and the corresponding truncated
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -961,7 +961,7 @@ where
|
|||
\begin_inset Formula $1$
|
||||
\end_inset
|
||||
|
||||
through
|
||||
to
|
||||
\begin_inset Formula $d_{n}$
|
||||
\end_inset
|
||||
|
||||
|
@ -969,7 +969,7 @@ where
|
|||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
goes from 1 through the multiplicity of irreducible representation
|
||||
goes from 1 to the multiplicity of irreducible representation
|
||||
\begin_inset Formula $\Gamma_{n}$
|
||||
\end_inset
|
||||
|
||||
|
@ -1328,8 +1328,8 @@ horizontal
|
|||
the same unit cell, e.g.
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect 0C},
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{xz}}{\longmapsto}\tilde{J}\left(\sigma_{xz}\right)\outcoeffp{\vect0C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1374,8 +1374,8 @@ vertical
|
|||
,
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(0,1\right)E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\left(1,0\right)C},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1385,22 +1385,22 @@ but we want
|
|||
\end_inset
|
||||
|
||||
to operate only inside one unit cell, so we use the Bloch condition
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
|
||||
\end_inset
|
||||
|
||||
: in this case, we have
|
||||
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect 0\alpha}e^{i0}=\outcoeffp{\vect 0\alpha}$
|
||||
\begin_inset Formula $\outcoeffp{\left(0,1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect M_{1}\cdot\vect a_{2}}=\outcoeffp{\vect0\alpha}e^{i0}=\outcoeffp{\vect0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect 0\alpha}=e^{i\pi}\outcoeffp{\vect 0\alpha}=-\outcoeffp{\vect 0\alpha},$
|
||||
\begin_inset Formula $\outcoeffp{\left(1,0\right)\alpha}=e^{i\vect M_{1}\cdot\vect a_{2}}\outcoeffp{\vect0\alpha}=e^{i\pi}\outcoeffp{\vect0\alpha}=-\outcoeffp{\vect0\alpha},$
|
||||
\end_inset
|
||||
|
||||
so
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect 0C}.
|
||||
\outcoeffp{\vect0A} & \overset{\sigma_{yz}}{\longmapsto}-\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{\sigma_{yz}}{\longmapsto}\tilde{J}\left(\sigma_{yz}\right)\outcoeffp{\vect0C}.
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -1439,19 +1439,19 @@ the original
|
|||
rotation, as an example we have
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\outcoeffp{\vect 0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0E},\\
|
||||
\outcoeff_{\vect 0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0A},\\
|
||||
\outcoeff_{\vect 0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect 0B},
|
||||
\outcoeffp{\vect0A} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(0,-1\right)E}=e^{2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0E},\\
|
||||
\outcoeff_{\vect0C} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)A}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0A},\\
|
||||
\outcoeff_{\vect0B} & \overset{C_{3}}{\longmapsto}\tilde{J}\left(C_{3}\right)\outcoeffp{\left(1,-1\right)B}=e^{-2\pi i/3}\tilde{J}\left(C_{3}\right)\outcoeffp{\vect0B},
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
because in this case, the Bloch condition gives
|
||||
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect 0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect 0\alpha}e^{2\pi i/3}=\outcoeffp{\vect 0\alpha}$
|
||||
\begin_inset Formula $\outcoeffp{\left(0,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(-\vect a_{2}\right)}=\outcoeffp{\vect0\alpha}e^{-4\pi i/3}=\outcoeffp{\vect0\alpha}e^{2\pi i/3}=\outcoeffp{\vect0\alpha}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect 0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect 0\alpha}.$
|
||||
\begin_inset Formula $\outcoeffp{\left(1,-1\right)\alpha}=\outcoeffp{\vect0\alpha}e^{i\vect K\cdot\left(\vect a_{1}-\vect a_{2}\right)}=e^{-2\pi i/3}\outcoeffp{\vect0\alpha}.$
|
||||
\end_inset
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue