"Rule of thumb" on cutoff
Former-commit-id: 79a98d83bd88baab80d454ec4147e4a0b739647c
This commit is contained in:
parent
055ad7a1be
commit
c70317dc25
|
@ -746,9 +746,93 @@ A rule of thumb to choose the
|
|||
\begin_inset Formula $\delta$
|
||||
\end_inset
|
||||
|
||||
can be obtained from the spherical Bessel function expansion around zero,
|
||||
TODO.
|
||||
can be obtained from the spherical Bessel function expansion around zero
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "10.52.1"
|
||||
key "NIST:DLMF"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
by requiring that
|
||||
\begin_inset Formula $\delta\gtrsim\left(nR\right)^{L}/\left(2L+1\right)!!$
|
||||
\end_inset
|
||||
|
||||
, where
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
is the scatterer radius and
|
||||
\begin_inset Formula $n$
|
||||
\end_inset
|
||||
|
||||
its (maximum) refractive index.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\left(2n+1\right)!! & =\frac{\left(2n+1\right)!}{2^{n}n!},\\
|
||||
\delta\gtrsim & \frac{R^{L}}{\left(2L+1\right)!!}=\frac{\left(2R\right)^{L}L!}{\left(2L+1\right)!}
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Stirling
|
||||
\begin_inset Formula $n!\approx\sqrt{2\pi n}\left(n/e\right)^{n}$
|
||||
\end_inset
|
||||
|
||||
so
|
||||
\begin_inset Newline newline
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{2\pi L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2\pi\left(2L+1\right)}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
|
||||
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2L+1}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
|
||||
\log\delta & \gtrsim L\log2+L\log R+\frac{1}{2}\log L-\frac{1}{2}\log\left(2L+1\right)+L\log L-L\log e-\left(2L+1\right)\log\left(2L+1\right)+\left(2L+1\right)\log e\\
|
||||
\log\delta & \gtrsim L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L+1\right)+\left(L+1\right)\\
|
||||
& >L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L\right)+\left(L+1\right)\\
|
||||
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)\\
|
||||
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
||||
too complicated, watabout
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\delta\gtrsim\left(2R\right)^{L}\frac{L^{L+1/2}e^{L}}{\left(2L\right)^{2L}}=\frac{R^{L}e^{L}}{2^{L}}L^{L+1/2}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\log\delta\gtrsim L\log\frac{ReL}{2}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\log\delta\gtrsim L\log\frac{ReL}{2}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
yäk
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
|
|
|
@ -1,149 +0,0 @@
|
|||
\selectlanguage{finnish}%
|
||||
|
||||
\section{Symmetries}\label{sec:Symmetries}
|
||||
|
||||
If the system has nontrivial point group symmetries, group theory
|
||||
gives additional understanding of the system properties, and can be
|
||||
used to reduce the computational costs.
|
||||
|
||||
As an example, if our system has a $D_{2h}$ symmetry and our truncated
|
||||
$\left(I-T\trops\right)$ matrix has size $N\times N$, it can be
|
||||
block-diagonalized into eight blocks of size about $N/8\times N/8$,
|
||||
each of which can be LU-factorised separately (this is due to the
|
||||
fact that $D_{2h}$ has eight different one-dimensional irreducible
|
||||
representations). This can reduce both memory and time requirements
|
||||
to solve the scattering problem (\ref{eq:Multiple-scattering problem block form})
|
||||
by a factor of 64.
|
||||
|
||||
In periodic systems (problems (\ref{eq:Multiple-scattering problem unit cell block form}),
|
||||
(\ref{eq:lattice mode equation})) due to small number of particles
|
||||
per unit cell, the costliest part is usually the evaluation of the
|
||||
lattice sums in the $W\left(\omega,\vect k\right)$ matrix, not the
|
||||
linear algebra. However, the lattice modes can be searched for in
|
||||
each irrep separately, and the irrep dimension gives a priori information
|
||||
about mode degeneracy.
|
||||
|
||||
\subsection{Excitation coefficients under point group operations}
|
||||
|
||||
In order to use the point group symmetries, we first need to know
|
||||
how they affect our basis functions, i.e. the VSWFs.
|
||||
|
||||
Let $g$ be a member of orthogonal group $O(3)$, i.e. a 3D point
|
||||
rotation or reflection operation that transforms vectors in $\reals^{3}$
|
||||
with an orthogonal matrix $R_{g}$:
|
||||
\[
|
||||
\vect r\mapsto R_{g}\vect r.
|
||||
\]
|
||||
Spherical harmonics $\ush lm$, being a basis the $l$-dimensional
|
||||
representation of $O(3)$, transform as \cite[???]{dresselhaus_group_2008}
|
||||
\[
|
||||
\ush lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\ush l{m'}\left(\uvec r\right)
|
||||
\]
|
||||
where $D_{m,m'}^{l}\left(g\right)$ denotes the elements of the \emph{Wigner
|
||||
matrix} representing the operation $g$. By their definition, vector
|
||||
spherical harmonics $\vsh 2lm,\vsh 3lm$ transform in the same way,
|
||||
\begin{align*}
|
||||
\vsh 2lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 2l{m'}\left(\uvec r\right),\\
|
||||
\vsh 3lm\left(R_{g}\uvec r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\end{align*}
|
||||
but the remaining set $\vsh 1lm$ transforms differently due to their
|
||||
pseudovector nature stemming from the cross product in their definition:
|
||||
\[
|
||||
\vsh 3lm\left(R_{g}\uvec r\right)=\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vsh 3l{m'}\left(\uvec r\right),
|
||||
\]
|
||||
where $\widetilde{D_{m,m'}^{l}}\left(g\right)=D_{m,m'}^{l}\left(g\right)$
|
||||
if $g$ is a proper rotation, but for spatial inversion operation
|
||||
$i:\vect r\mapsto-\vect r$ we have $\widetilde{D_{m,m'}^{l}}\left(i\right)=\left(-1\right)^{l+m}D_{m,m'}^{l}\left(i\right)$.
|
||||
The transformation behaviour of vector spherical harmonics directly
|
||||
propagates to the spherical vector waves, cf. (\ref{eq:VSWF regular}),
|
||||
(\ref{eq:VSWF outgoing}):
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}\widetilde{D_{m,m'}^{l}}\left(g\right)\vswfouttlm 1l{m'}\left(\vect r\right),\\
|
||||
\vswfouttlm 2lm\left(R_{g}\vect r\right) & =\sum_{m'=-l}^{l}D_{m,m'}^{l}\left(g\right)\vswfouttlm 2l{m'}\left(\vect r\right),
|
||||
\end{align*}
|
||||
(and analogously for the regular waves $\vswfrtlm{\tau}lm$). For
|
||||
convenience, we introduce the symbol $D_{m,m'}^{\tau l}$ that describes
|
||||
the transformation of both types (``magnetic'' and ``electric'')
|
||||
of waves at once:
|
||||
\[
|
||||
\vswfouttlm{\tau}lm\left(R_{g}\vect r\right)=\sum_{m'=-l}^{l}D_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(\vect r\right).
|
||||
\]
|
||||
Using these, we can express the VSWF expansion (\ref{eq:E field expansion})
|
||||
of the electric field around origin in a rotated/reflected system,
|
||||
\[
|
||||
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\vect r\right)+\outcoefftlm{\tau}lmD_{m,m'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\vect r\right)\right),
|
||||
\]
|
||||
which, together with the $T$-matrix definition, (\ref{eq:T-matrix definition})
|
||||
can be used to obtain a $T$-matrix of a rotated or mirror-reflected
|
||||
particle. Let $T$ be the $T$-matrix of an original particle; the
|
||||
$T$-matrix of a particle physically transformed by operation $g\in O(3)$
|
||||
is then
|
||||
\begin{equation}
|
||||
T'_{\tau lm;\tau'l'm'}=\sum_{\mu=-l}^{l}\sum_{\mu'=-l'}^{l'}\left(D_{\mu,m}^{\tau l}\left(g\right)\right)^{*}T_{\tau l\mu;\tau'l'm'}D_{m',\mu'}^{\tau l}\left(g\right).\label{eq:T-matrix of a transformed particle}
|
||||
\end{equation}
|
||||
If the particle is symmetric (so that $g$ produces a particle indistinguishable
|
||||
from the original one), the $T$-matrix must remain invariant under
|
||||
the transformation (\ref{eq:T-matrix of a transformed particle}),
|
||||
$T'_{\tau lm;\tau'l'm'}=T{}_{\tau lm;\tau'l'm'}$. Explicit forms
|
||||
of these invariance properties for the most imporant point group symmetries
|
||||
can be found in \cite{schulz_point-group_1999}.
|
||||
|
||||
If the field expansion is done around a point $\vect r_{p}$ different
|
||||
from the global origin, as in \ref{eq:E field expansion multiparticle},
|
||||
we have\foreignlanguage{english}{
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||
\end{align}
|
||||
}
|
||||
|
||||
\begin{figure}
|
||||
\caption{Scatterer orbits under $D_{2}$ symmetry. Particles $A,B,C,D$ lie
|
||||
outside of origin or any mirror planes, and together constitute an
|
||||
orbit of the size equal to the order of the group, $\left|D_{2}\right|=4$.
|
||||
Particles $E,F$ lie on the $xz$ plane, hence the corresponding reflection
|
||||
maps each of them to itself, but the $yz$ reflection (or the $\pi$
|
||||
rotation around the $z$ axis) maps them to each other, forming a
|
||||
particle orbit of size 2. The particle $O$ in the very origin is
|
||||
always mapped to itself, constituting its own orbit.}\label{fig:D2-symmetric structure particle orbits}
|
||||
\end{figure}
|
||||
|
||||
With these transformation properties in hand, we can proceed to the
|
||||
effects of point symmetries on the whole many-particle system. Let
|
||||
us have a many-particle system symmetric with respect to a point group
|
||||
$G$. A symmetry operation $g\in G$ determines a permutation of the
|
||||
particles: $p\mapsto\pi_{g}(p)$, $p\in\mathcal{P}$. For a given
|
||||
particle $p$, we will call the set of particles onto which any of
|
||||
the symmetries maps the particle $p$, i.e. the set $\left\{ \pi_{g}\left(p\right);g\in G\right\} $,
|
||||
as the \emph{orbit} of particle $p$. The whole set $\mathcal{P}$
|
||||
can therefore be divided into the different particle orbits; an example
|
||||
is in Fig. \ref{fig:D2-symmetric structure particle orbits}. The
|
||||
importance of the particle orbits stems from the following: in the
|
||||
multiple-scattering problem, outside of the scatterers one has \foreignlanguage{english}{
|
||||
\begin{align}
|
||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\
|
||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
|
||||
\end{align}
|
||||
This means that the field expansion coefficients $\rcoeffp p,\outcoeffp p$
|
||||
transform as
|
||||
\begin{align}
|
||||
\rcoeffptlm p{\tau}lm & \mapsto\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right),\nonumber \\
|
||||
\outcoeffptlm p{\tau}lm & \mapsto\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right).\label{eq:excitation coefficient under symmetry operation}
|
||||
\end{align}
|
||||
Obviously, the expansion coefficients belonging to particles in different
|
||||
orbits do not mix together. As before, we introduce a short-hand block-matrix
|
||||
notation for \ref{eq:excitation coefficient under symmetry operation}}
|
||||
|
||||
\selectlanguage{english}%
|
||||
\begin{align}
|
||||
\rcoeff & \mapsto D\left(g\right)a,\nonumber \\
|
||||
\outcoeff & \mapsto D\left(g\right)\outcoeff.\label{eq:excitation coefficient under symmetry operation block form}
|
||||
\end{align}
|
||||
|
||||
\selectlanguage{finnish}%
|
||||
|
||||
\subsection{Irrep decomposition}
|
||||
|
||||
\subsection{Periodic systems}
|
||||
|
||||
\selectlanguage{english}%
|
||||
|
Loading…
Reference in New Issue