Implement some of Javier's notes.

Former-commit-id: 3881eccd2bbca4975d50c4a749751b7c134d6698
This commit is contained in:
Marek Nečada 2019-08-06 10:16:53 +03:00
parent c70317dc25
commit 2a890c56ac
3 changed files with 69 additions and 39 deletions

View File

@ -481,7 +481,11 @@ The single-particle scattering problem at frequency
\end_inset
.
Inside this volume, the electric field can be expanded as
Inside
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
\end_inset
, the electric field can be expanded as
\begin_inset Note Note
status open
@ -770,7 +774,7 @@ literal "false"
its (maximum) refractive index.
\begin_inset Note Note
status open
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
@ -1281,7 +1285,7 @@ In practice, the multiple-scattering problem is solved in its truncated
\begin_inset Formula $l\le L_{p}$
\end_inset
, laeving only
, leaving only
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
\end_inset
@ -1428,11 +1432,7 @@ Let
\end_inset
where an explicit formula for the (regular)
\emph on
translation operator
\emph default
where an explicit formula for the regular translation operator
\begin_inset Formula $\tropr$
\end_inset
@ -1547,7 +1547,7 @@ reference "eq:regular vswf translation"
,
\begin_inset Formula
\[
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)
\]
\end_inset
@ -1579,7 +1579,12 @@ reference "eq:regular vswf coefficient translation"
\end_inset
(note the reversed indices; TODO redefine them in
(note the reversed indices
\begin_inset Note Note
status open
\begin_layout Plain Layout
; TODO redefine them in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf translation"
@ -1593,7 +1598,12 @@ reference "eq:singular vswf translation"
\end_inset
? Similarly, if we had only outgoing waves in the original expansion around
?
\end_layout
\end_inset
) Similarly, if we had only outgoing waves in the original expansion around
\begin_inset Formula $\vect r_{p}$
\end_inset

View File

@ -329,6 +329,16 @@ noprefix "false"
\begin_layout Standard
As in the case of a finite system, eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be written in a shorter block-matrix form,
\begin_inset Formula
\begin{equation}
@ -526,7 +536,17 @@ noprefix "false"
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
\end_inset
(modulo lattice points; TODO write this a clean way).
(modulo reciprocal lattice points
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO write this in a clean way
\end_layout
\end_inset
).
A somehow challenging step is to distinguish the different bands that can
all be very close to the empty lattice approximation, especially if the
particles in the systems are small.

View File

@ -98,11 +98,11 @@ If the system has nontrivial point group symmetries, group theory gives
\end_layout
\begin_layout Standard
As an example, if our system has a
As an example, if the system has a
\begin_inset Formula $D_{2h}$
\end_inset
symmetry and our truncated
symmetry and the corresponding truncated
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
@ -961,7 +961,7 @@ where
\begin_inset Formula $1$
\end_inset
through
to
\begin_inset Formula $d_{n}$
\end_inset
@ -969,7 +969,7 @@ where
\begin_inset Formula $i$
\end_inset
goes from 1 through the multiplicity of irreducible representation
goes from 1 to the multiplicity of irreducible representation
\begin_inset Formula $\Gamma_{n}$
\end_inset