Implement some of Javier's notes.
Former-commit-id: 3881eccd2bbca4975d50c4a749751b7c134d6698
This commit is contained in:
parent
c70317dc25
commit
2a890c56ac
|
@ -481,7 +481,11 @@ The single-particle scattering problem at frequency
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Inside this volume, the electric field can be expanded as
|
||||
Inside
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
, the electric field can be expanded as
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -770,7 +774,7 @@ literal "false"
|
|||
|
||||
its (maximum) refractive index.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Formula
|
||||
|
@ -1281,7 +1285,7 @@ In practice, the multiple-scattering problem is solved in its truncated
|
|||
\begin_inset Formula $l\le L_{p}$
|
||||
\end_inset
|
||||
|
||||
, laeving only
|
||||
, leaving only
|
||||
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1428,11 +1432,7 @@ Let
|
|||
|
||||
\end_inset
|
||||
|
||||
where an explicit formula for the (regular)
|
||||
\emph on
|
||||
translation operator
|
||||
\emph default
|
||||
|
||||
where an explicit formula for the regular translation operator
|
||||
\begin_inset Formula $\tropr$
|
||||
\end_inset
|
||||
|
||||
|
@ -1547,7 +1547,7 @@ reference "eq:regular vswf translation"
|
|||
,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
||||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1579,7 +1579,12 @@ reference "eq:regular vswf coefficient translation"
|
|||
|
||||
\end_inset
|
||||
|
||||
(note the reversed indices; TODO redefine them in
|
||||
(note the reversed indices
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
; TODO redefine them in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
|
@ -1593,7 +1598,12 @@ reference "eq:singular vswf translation"
|
|||
|
||||
\end_inset
|
||||
|
||||
? Similarly, if we had only outgoing waves in the original expansion around
|
||||
?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
) Similarly, if we had only outgoing waves in the original expansion around
|
||||
|
||||
\begin_inset Formula $\vect r_{p}$
|
||||
\end_inset
|
||||
|
|
|
@ -329,6 +329,16 @@ noprefix "false"
|
|||
|
||||
\begin_layout Standard
|
||||
As in the case of a finite system, eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
|
@ -526,7 +536,17 @@ noprefix "false"
|
|||
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
|
||||
\end_inset
|
||||
|
||||
(modulo lattice points; TODO write this a clean way).
|
||||
(modulo reciprocal lattice points
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO write this in a clean way
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
A somehow challenging step is to distinguish the different bands that can
|
||||
all be very close to the empty lattice approximation, especially if the
|
||||
particles in the systems are small.
|
||||
|
|
|
@ -98,11 +98,11 @@ If the system has nontrivial point group symmetries, group theory gives
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As an example, if our system has a
|
||||
As an example, if the system has a
|
||||
\begin_inset Formula $D_{2h}$
|
||||
\end_inset
|
||||
|
||||
symmetry and our truncated
|
||||
symmetry and the corresponding truncated
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -961,7 +961,7 @@ where
|
|||
\begin_inset Formula $1$
|
||||
\end_inset
|
||||
|
||||
through
|
||||
to
|
||||
\begin_inset Formula $d_{n}$
|
||||
\end_inset
|
||||
|
||||
|
@ -969,7 +969,7 @@ where
|
|||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
goes from 1 through the multiplicity of irreducible representation
|
||||
goes from 1 to the multiplicity of irreducible representation
|
||||
\begin_inset Formula $\Gamma_{n}$
|
||||
\end_inset
|
||||
|
||||
|
|
Loading…
Reference in New Issue