Scattering reference – power transport

Former-commit-id: 9e13ded36e422d7bd7bf40352cb89bfa3fee01a6
This commit is contained in:
Marek Nečada 2016-06-30 19:29:56 +03:00
parent fe0ccb92b8
commit 377eb5509d
1 changed files with 245 additions and 10 deletions

View File

@ -108,18 +108,82 @@ Zillion conventions for spherical vector waves
Legendre polynomials and spherical harmonics: messy from the very beginning
\end_layout
\begin_layout Subsection
Kristensson
\begin_layout Standard
\begin_inset Marginal
status open
\begin_layout Plain Layout
FIXME check the Condon-Shortley phases.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Associated Legendre polynomial of degree
\begin_inset Formula $l\ge0$
\end_inset
and order
\begin_inset Formula $m,$
\end_inset
\begin_inset Formula $l\ge m\ge-l$
\end_inset
, is given by the recursive relation
\begin_inset Formula
\[
P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{Condon-Shortley phase}}\frac{1}{2^{l}l!}\left(1-x^{2}\right)^{m/2}\frac{\ud^{l+m}}{\ud x^{l+m}}\left(x^{2}-1\right)^{l}.
\]
\end_inset
There is a relation between the positive and negative orders,
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
P_{l}^{-m}=\left(-1\right)^{m}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0
P_{l}^{-m}=\underbrace{\left(-1\right)^{m}}_{\mbox{C.-S. p.}}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0.
\]
\end_inset
The index
\begin_inset Formula $l$
\end_inset
(in certain notations, it is often
\begin_inset Formula $n$
\end_inset
) is called
\emph on
degree
\emph default
, index
\begin_inset Formula $m$
\end_inset
is the
\emph on
order
\emph default
.
These two terms are then transitively used for all the object which build
on the associated Legendre polynomials, i.e.
spherical harmonics, vector spherical harmonics, spherical waves etc.
\end_layout
\begin_layout Subsection
Kristensson
\end_layout
\begin_layout Standard
Kristensson uses the Condon-Shortley phase, so (sect.
[K]D.2)
\end_layout
@ -528,10 +592,11 @@ In this section I summarize the formulae for power
\begin_inset Formula $E_{0}$
\end_inset
, this can be used to calculate the absorption cross section,
, this can be used to calculate the absorption cross section (TODO check
if it should be multiplied by the 2),
\begin_inset Formula
\[
\sigma_{\mathrm{abs}}=-\frac{P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
\sigma_{\mathrm{abs}}=-\frac{2P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
\]
\end_inset
@ -576,7 +641,18 @@ Here
The radiated power is then (2.28):
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right).
\]
\end_inset
The first term is obviously the power radiated away by the outgoing waves.
The second term must then be minus the power sucked by the scatterer from
the exciting wave.
If the exciting wave is plane, it gives us the extinction cross section
\begin_inset Formula
\[
\sigma_{\mathrm{tot}}=-\frac{\sum_{n}\Re\left(f_{n}a_{n}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
\]
\end_inset
@ -656,7 +732,15 @@ reference "eq:power-Kristensson-E"
The radiated power is then
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}\eta}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
\]
\end_inset
If the exciting wave is a plane wave, the extinction cross section is
\begin_inset Formula
\[
\sigma_{\mathrm{tot}}=\frac{\Re\left(a_{mn}p_{mn}^{*}\right)+\Re\left(b_{mn}q_{mn}^{*}\right)}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}
\]
\end_inset
@ -689,15 +773,166 @@ Near field limit
\end_layout
\begin_layout Chapter
Mie Theory
Single particle scattering and Mie theory
\end_layout
\begin_layout Standard
The basic idea is simple.
For an exciting spherical wave (usually the regular wave in whatever convention
) of a given frequency
\begin_inset Formula $\omega$
\end_inset
, type
\begin_inset Formula $\zeta$
\end_inset
(electric or magnetic), degree
\begin_inset Formula $l$
\end_inset
and order
\begin_inset Formula $m$
\end_inset
, the particle responds with waves from the complementary set (e.g.
outgoing waves), with the same frequency
\begin_inset Formula $\omega$
\end_inset
, but any type
\begin_inset Formula $\zeta'$
\end_inset
, degree
\begin_inset Formula $l'$
\end_inset
and order
\begin_inset Formula $m'$
\end_inset
, in a way that the Maxwell's equations are satisfied, with the coefficients
\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)$
\end_inset
.
This yields one row in the scattering matrix (often called the
\begin_inset Formula $T$
\end_inset
-matrix)
\begin_inset Formula $T(\omega)$
\end_inset
, which fully characterizes the scattering properties of the particle (in
the linear regime, of course).
Analytical expression for the matrix is known for spherical scatterer,
otherwise it is computed numerically (using DDA, BEM or whatever).
So if we have the two sets of spherical wave functions
\begin_inset Formula $\vect f_{lm}^{J_{1},\zeta}$
\end_inset
,
\begin_inset Formula $\vect f_{lm}^{J_{2},\zeta}$
\end_inset
and the full
\begin_inset Quotes sld
\end_inset
exciting
\begin_inset Quotes srd
\end_inset
wave has electric field given as
\begin_inset Formula
\[
\vect E_{\mathrm{ext}}=\sum_{\zeta=\mathrm{E,M}}\sum_{l,m}c_{lm}^{\zeta}\vect f_{lm}^{\zeta},
\]
\end_inset
the
\begin_inset Quotes sld
\end_inset
scattered
\begin_inset Quotes srd
\end_inset
field will be
\begin_inset Formula
\[
\vect E_{\mathrm{scat}}=\sum_{\zeta',l',m'}\sum_{\zeta,l,m}T_{l',m';l,m}^{\zeta',\zeta}c_{lm}^{\zeta}\vect f_{l'm'}^{\zeta'},
\]
\end_inset
and the total field around the scaterer is
\begin_inset Formula $\vect E=\vect E_{\mathrm{ext}}+\vect E_{\mathrm{scat}}$
\end_inset
.
\end_layout
\begin_layout Section
Full version
Mie theory full version
\end_layout
\begin_layout Standard
\begin_inset Formula $T$
\end_inset
-matrix for a spherical particle is type-, degree- and order- diagonal,
that is,
\begin_inset Formula $T_{l',m';l,m}^{\zeta',\zeta}(\omega)=0$
\end_inset
if
\begin_inset Formula $l\ne l'$
\end_inset
,
\begin_inset Formula $m\ne m'$
\end_inset
or
\begin_inset Formula $\zeta\ne\zeta'$
\end_inset
.
Moreover, it does not depend on
\begin_inset Formula $m$
\end_inset
, so
\begin_inset Formula
\[
T_{l',m';l,m}^{\zeta',\zeta}(\omega)=T_{l}^{\zeta}\left(\omega\right)\delta_{\zeta'\zeta}\delta_{l'l}\delta_{m'm}
\]
\end_inset
where for the usual choice
\begin_inset Formula $J_{1}=1,J_{2}=3$
\end_inset
\begin_inset Formula
\begin{eqnarray*}
T_{l}^{E}\left(\omega\right) & = & TODO,\\
T_{l}^{M}(\omega) & = & TODO.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Section
Long wave approximation
Long wave approximation for spherical nanoparticle
\end_layout
\begin_layout Standard