[ewald] dudopráce
Former-commit-id: 798838a72c453bc8c30764373b36d52156500251
This commit is contained in:
parent
f6c6003cdd
commit
46138df4fe
|
@ -656,12 +656,76 @@ where
|
|||
\begin_inset Formula $z_{p}^{(J)}\left(r\right)$
|
||||
\end_inset
|
||||
|
||||
some of the Bessel or Hankel functions (TODO) and
|
||||
some of the Bessel or Hankel functions (probably
|
||||
\begin_inset Formula $h_{p}^{(1)}$
|
||||
\end_inset
|
||||
|
||||
in the meaningful cases; TODO) and
|
||||
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
|
||||
\end_inset
|
||||
|
||||
are some ugly but known coefficients (REF Xu 1996, eqs.
|
||||
76,77).
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The spherical Hankel functions can be expressed analytically as (REF DLMF
|
||||
10.49.6, 10.49.1)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
so if we find a way to deal with the radial functions
|
||||
\begin_inset Formula $s_{q}(r)=e^{ir}r^{-q}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $q=1,2$
|
||||
\end_inset
|
||||
|
||||
in 2d case or
|
||||
\begin_inset Formula $q=1,2,3$
|
||||
\end_inset
|
||||
|
||||
in 3d case, we get absolutely convergent summations in the direct space.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
2d
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
3d
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
@ -735,9 +799,9 @@ so it is not unitary.
|
|||
\begin_layout Standard
|
||||
An unitary convention would look like this:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||
\]
|
||||
\begin{equation}
|
||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -747,10 +811,10 @@ Then
|
|||
|
||||
and the unitary, angular-momentum Fourier transform reads
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\
|
||||
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).
|
||||
\end{eqnarray*}
|
||||
\begin{eqnarray}
|
||||
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\nonumber \\
|
||||
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).\label{eq:Fourier v. Hankel tf 3d}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -777,9 +841,9 @@ f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\
|
|||
its Fourier transform is then (CHECK this, it is taken from the Wikipedia
|
||||
article on Hankel transform)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right)
|
||||
\]
|
||||
\begin{equation}
|
||||
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\phi_{\vect k}}\pht mf_{m}\left(\left|\vect k\right|\right)\label{eq:Fourier v. Hankel tf 2d}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -789,9 +853,9 @@ where the Hankel transform of order
|
|||
|
||||
is defined as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r
|
||||
\]
|
||||
\begin{equation}
|
||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
|
Loading…
Reference in New Issue