[ewald] Hankel vs. Fourier transform (appendix)

Former-commit-id: 8bfeb487a1b81c0c05ca7718eb356390d1680304
This commit is contained in:
Marek Nečada 2017-08-07 19:08:35 +00:00
parent 16f0db21c5
commit f6c6003cdd
1 changed files with 147 additions and 6 deletions

View File

@ -122,6 +122,21 @@
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
@ -162,6 +177,11 @@
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\end_layout
\begin_layout Title
@ -623,7 +643,7 @@ The translation operator
for compact scatterers in 3d can be expressed as
\begin_inset Formula
\[
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}Y_{p,m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
\]
\end_inset
@ -640,25 +660,146 @@ where
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
\end_inset
are some ugly but known coefficients (Xu 1996, eqs.
are some ugly but known coefficients (REF Xu 1996, eqs.
76,77).
\end_layout
\begin_layout Section
(Appendix) Hankel transform
(Appendix) Fourier vs.
Hankel transform
\end_layout
\begin_layout Subsection
Three dimensions
\end_layout
\begin_layout Standard
Acording to (Baddour 2010, eq.
13) (CHECK FACTORS)
Given a nice enough function
\begin_inset Formula $f$
\end_inset
of a real 3d variable, assume its factorisation into radial and angular
parts
\begin_inset Formula
\[
\uaft f(\vect k)=
f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
\]
\end_inset
Acording to (REF Baddour 2010, eqs.
13, 16), its Fourier transform can then be expressed in terms of Hankel
transforms (CHECK normalisation of
\begin_inset Formula $j_{n}$
\end_inset
, REF Baddour (1))
\begin_inset Formula
\[
\uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
\]
\end_inset
where the spherical Hankel transform
\begin_inset Formula $\bsht l{}$
\end_inset
of degree
\begin_inset Formula $l$
\end_inset
is defined as (REF Baddour eq.
2)
\begin_inset Formula
\[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\]
\end_inset
Using this convention, the inverse spherical Hankel transform is given by
(REF Baddour eq.
3)
\begin_inset Formula
\[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
\]
\end_inset
so it is not unitary.
\end_layout
\begin_layout Standard
An unitary convention would look like this:
\begin_inset Formula
\[
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\]
\end_inset
Then
\begin_inset Formula $\usht l{}^{-1}=\usht l{}$
\end_inset
and the unitary, angular-momentum Fourier transform reads
\begin_inset Formula
\begin{eqnarray*}
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).
\end{eqnarray*}
\end_inset
Cool.
\end_layout
\begin_layout Subsection
Two dimensions
\end_layout
\begin_layout Standard
Similarly in 2d, let the expansion of
\begin_inset Formula $f$
\end_inset
be
\begin_inset Formula
\[
f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
\]
\end_inset
its Fourier transform is then (CHECK this, it is taken from the Wikipedia
article on Hankel transform)
\begin_inset Formula
\[
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right)
\]
\end_inset
where the Hankel transform of order
\begin_inset Formula $m$
\end_inset
is defined as
\begin_inset Formula
\[
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r
\]
\end_inset
which is already self-inverse,
\begin_inset Formula $\pht m{}^{-1}=\pht m{}$
\end_inset
(hence also unitary).
\end_layout
\begin_layout Section