[ewald] Hankel vs. Fourier transform (appendix)
Former-commit-id: 8bfeb487a1b81c0c05ca7718eb356390d1680304
This commit is contained in:
parent
16f0db21c5
commit
f6c6003cdd
notes
153
notes/ewald.lyx
153
notes/ewald.lyx
|
@ -122,6 +122,21 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vect}[1]{\mathbf{#1}}
|
||||
\end_inset
|
||||
|
@ -162,6 +177,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
|
@ -623,7 +643,7 @@ The translation operator
|
|||
for compact scatterers in 3d can be expressed as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}Y_{p,m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
|
||||
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -640,25 +660,146 @@ where
|
|||
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
|
||||
\end_inset
|
||||
|
||||
are some ugly but known coefficients (Xu 1996, eqs.
|
||||
are some ugly but known coefficients (REF Xu 1996, eqs.
|
||||
76,77).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
(Appendix) Hankel transform
|
||||
(Appendix) Fourier vs.
|
||||
Hankel transform
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Three dimensions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Acording to (Baddour 2010, eq.
|
||||
13) (CHECK FACTORS)
|
||||
Given a nice enough function
|
||||
\begin_inset Formula $f$
|
||||
\end_inset
|
||||
|
||||
of a real 3d variable, assume its factorisation into radial and angular
|
||||
parts
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f(\vect k)=
|
||||
f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Acording to (REF Baddour 2010, eqs.
|
||||
13, 16), its Fourier transform can then be expressed in terms of Hankel
|
||||
transforms (CHECK normalisation of
|
||||
\begin_inset Formula $j_{n}$
|
||||
\end_inset
|
||||
|
||||
, REF Baddour (1))
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where the spherical Hankel transform
|
||||
\begin_inset Formula $\bsht l{}$
|
||||
\end_inset
|
||||
|
||||
of degree
|
||||
\begin_inset Formula $l$
|
||||
\end_inset
|
||||
|
||||
is defined as (REF Baddour eq.
|
||||
2)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Using this convention, the inverse spherical Hankel transform is given by
|
||||
(REF Baddour eq.
|
||||
3)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
so it is not unitary.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
An unitary convention would look like this:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
Then
|
||||
\begin_inset Formula $\usht l{}^{-1}=\usht l{}$
|
||||
\end_inset
|
||||
|
||||
and the unitary, angular-momentum Fourier transform reads
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\
|
||||
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
Cool.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Two dimensions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Similarly in 2d, let the expansion of
|
||||
\begin_inset Formula $f$
|
||||
\end_inset
|
||||
|
||||
be
|
||||
\begin_inset Formula
|
||||
\[
|
||||
f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
its Fourier transform is then (CHECK this, it is taken from the Wikipedia
|
||||
article on Hankel transform)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where the Hankel transform of order
|
||||
\begin_inset Formula $m$
|
||||
\end_inset
|
||||
|
||||
is defined as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
which is already self-inverse,
|
||||
\begin_inset Formula $\pht m{}^{-1}=\pht m{}$
|
||||
\end_inset
|
||||
|
||||
(hence also unitary).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
|
Loading…
Reference in New Issue