[ewald] dudopráce

Former-commit-id: 798838a72c453bc8c30764373b36d52156500251
This commit is contained in:
Marek Nečada 2017-08-09 11:09:38 +00:00
parent f6c6003cdd
commit 46138df4fe
1 changed files with 78 additions and 14 deletions

View File

@ -656,12 +656,76 @@ where
\begin_inset Formula $z_{p}^{(J)}\left(r\right)$ \begin_inset Formula $z_{p}^{(J)}\left(r\right)$
\end_inset \end_inset
some of the Bessel or Hankel functions (TODO) and some of the Bessel or Hankel functions (probably
\begin_inset Formula $h_{p}^{(1)}$
\end_inset
in the meaningful cases; TODO) and
\begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$ \begin_inset Formula $c_{p}^{l,m,t\leftarrow l',m',t'}$
\end_inset \end_inset
are some ugly but known coefficients (REF Xu 1996, eqs. are some ugly but known coefficients (REF Xu 1996, eqs.
76,77). 76,77).
\end_layout
\begin_layout Standard
The spherical Hankel functions can be expressed analytically as (REF DLMF
10.49.6, 10.49.1)
\begin_inset Formula
\[
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},
\]
\end_inset
so if we find a way to deal with the radial functions
\begin_inset Formula $s_{q}(r)=e^{ir}r^{-q}$
\end_inset
,
\begin_inset Formula $q=1,2$
\end_inset
in 2d case or
\begin_inset Formula $q=1,2,3$
\end_inset
in 3d case, we get absolutely convergent summations in the direct space.
\end_layout
\begin_layout Subsection
2d
\end_layout
\begin_layout Standard
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
\]
\end_inset
\end_layout
\begin_layout Subsection
3d
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
\]
\end_inset
\end_layout \end_layout
\begin_layout Section \begin_layout Section
@ -735,9 +799,9 @@ so it is not unitary.
\begin_layout Standard \begin_layout Standard
An unitary convention would look like this: An unitary convention would look like this:
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). \usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\] \end{equation}
\end_inset \end_inset
@ -747,10 +811,10 @@ Then
and the unitary, angular-momentum Fourier transform reads and the unitary, angular-momentum Fourier transform reads
\begin_inset Formula \begin_inset Formula
\begin{eqnarray*} \begin{eqnarray}
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\\ \uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\nonumber \\
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right). & = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).\label{eq:Fourier v. Hankel tf 3d}
\end{eqnarray*} \end{eqnarray}
\end_inset \end_inset
@ -777,9 +841,9 @@ f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\
its Fourier transform is then (CHECK this, it is taken from the Wikipedia its Fourier transform is then (CHECK this, it is taken from the Wikipedia
article on Hankel transform) article on Hankel transform)
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\theta_{\vect k}}\pht mf\left(\left|\vect k\right|\right) \uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\phi_{\vect k}}\pht mf_{m}\left(\left|\vect k\right|\right)\label{eq:Fourier v. Hankel tf 2d}
\] \end{equation}
\end_inset \end_inset
@ -789,9 +853,9 @@ where the Hankel transform of order
is defined as is defined as
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, J_{m}(kr)r \pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
\] \end{equation}
\end_inset \end_inset