"Basis fields" for finite systems.
There seem to be race conditions in the prange'd cython parts.
This commit is contained in:
parent
9e350cdac6
commit
478b010a15
|
@ -1289,8 +1289,9 @@ cdef class _ScatteringSystemAtOmega:
|
|||
return results.reshape(evalpos.shape)
|
||||
|
||||
@boundscheck(False)
|
||||
def scattered_field_basis(self, evalpos, blochvector=None, btyp=QPMS_HANKEL_PLUS):
|
||||
def scattered_field_basis(self, evalpos, blochvector=None, particle=None, btyp=QPMS_HANKEL_PLUS):
|
||||
# TODO examples
|
||||
# FIXME periodic case not implemented
|
||||
"""Evaluate scattered field "basis"
|
||||
|
||||
This function enables the evaluation of "scattered" fields
|
||||
|
@ -1304,25 +1305,31 @@ cdef class _ScatteringSystemAtOmega:
|
|||
Evaluation points in cartesian coordinates.
|
||||
blochvector: array_like or None
|
||||
Bloch vector, must be supplied (non-None) for periodic systems, else None.
|
||||
particle_index: int or None (default), optional
|
||||
A valid particle index; if specified, only the contribution of the given particle
|
||||
is evaluated. Not applicable for periodic arrays.
|
||||
btyp: BesselType, optional
|
||||
Kind of the waves. Defaults to BesselType.HANKEL_PLUS.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray of complex, with the shape `evalpos.shape[:-1] + (self.fecv_size, 3)`
|
||||
ndarray of complex, with the shape `evalpos.shape[:-1] + (n, 3)`
|
||||
"Basis" fields at the positions given in `evalpos`, in cartesian coordinates.
|
||||
`n` here stays either for `self.fecv_size` (if `particle==None`)
|
||||
or `len(self.bspec_pi(particle))`.
|
||||
"""
|
||||
if(btyp != QPMS_HANKEL_PLUS):
|
||||
raise NotImplementedError("Only first kind Bessel function-based fields are supported")
|
||||
#if(btyp != QPMS_HANKEL_PLUS): # #TODO, IIRC not supported only for periodic systems
|
||||
# raise NotImplementedError("Only first kind Bessel function-based fields are supported")
|
||||
cdef qpms_bessel_t btyp_c = BesselType(btyp)
|
||||
cdef Py_ssize_t fecv_size = self.fecv_size
|
||||
cdef Py_ssize_t basissize = self.fecv_size if particle is None else len(self.bspec_pi(particle))
|
||||
cdef qpms_ss_pi_t pi = particle
|
||||
evalpos = np.array(evalpos, dtype=float, copy=False)
|
||||
if evalpos.shape[-1] != 3:
|
||||
raise ValueError("Last dimension of evalpos has to be 3")
|
||||
cdef np.ndarray[double,ndim=2] evalpos_a = evalpos.reshape(-1,3)
|
||||
cdef np.ndarray[complex, ndim=3] results = np.empty((evalpos_a.shape[0], fecv_size, 3), dtype=complex)
|
||||
cdef np.ndarray[complex, ndim=3] results = np.empty((evalpos_a.shape[0], basissize, 3), dtype=complex)
|
||||
cdef ccart3_t *res
|
||||
res = <ccart3_t *> malloc(fecv_size*sizeof(ccart3_t))
|
||||
res = <ccart3_t *> malloc(basissize*sizeof(ccart3_t))
|
||||
cdef cart3_t pos
|
||||
cdef Py_ssize_t i, j
|
||||
with nogil, wraparound(False), parallel():
|
||||
|
@ -1330,13 +1337,23 @@ cdef class _ScatteringSystemAtOmega:
|
|||
pos.x = evalpos_a[i,0]
|
||||
pos.y = evalpos_a[i,1]
|
||||
pos.z = evalpos_a[i,2]
|
||||
if particle is None:
|
||||
qpms_scatsysw_scattered_field_basis(res, self.ssw, btyp_c, pos)
|
||||
for j in range(fecv_size):
|
||||
else:
|
||||
qpms_scatsysw_scattered_field_basis_pi(res, self.ssw, pi, btyp_c, pos)
|
||||
for j in range(basissize):
|
||||
results[i,j,0] = res[j].x
|
||||
results[i,j,1] = res[j].y
|
||||
results[i,j,2] = res[j].z
|
||||
free(res)
|
||||
return results.reshape(evalpos.shape[:-1] + (self.fecv_size, 3))
|
||||
return results.reshape(evalpos.shape[:-1] + (basissize, 3))
|
||||
|
||||
def bspec_pi(self, pi):
|
||||
return self.ss_pyref.bspec_pi(pi)
|
||||
|
||||
property bspecs:
|
||||
def __get__(self):
|
||||
return self.ss_pyref.bspecs
|
||||
|
||||
|
||||
cdef class ScatteringMatrix:
|
||||
|
|
|
@ -712,6 +712,10 @@ cdef extern from "scatsystem.h":
|
|||
qpms_bessel_t btyp, cdouble wavenumber, cart3_t where) nogil
|
||||
qpms_errno_t qpms_scatsysw_scattered_field_basis(ccart3_t *target, const qpms_scatsys_at_omega_t *ssw,
|
||||
qpms_bessel_t btyp, cart3_t where) nogil
|
||||
qpms_errno_t qpms_scatsys_scattered_field_basis_pi(ccart3_t *target, const qpms_scatsys_t *ss,
|
||||
qpms_ss_pi_t pi, qpms_bessel_t btyp, cdouble wavenumber, cart3_t where) nogil
|
||||
qpms_errno_t qpms_scatsysw_scattered_field_basis_pi(ccart3_t *target, const qpms_scatsys_at_omega_t *ssw,
|
||||
qpms_ss_pi_t pi, qpms_bessel_t btyp, cart3_t where) nogil
|
||||
qpms_errno_t qpms_scatsyswk_scattered_field_basis(ccart3_t *target, const qpms_scatsys_at_omega_k_t *sswk,
|
||||
qpms_bessel_t btyp, cart3_t where) nogil
|
||||
double qpms_ss_adjusted_eta(const qpms_scatsys_t *ss, cdouble wavenumber, const double *wavevector) nogil
|
||||
|
|
|
@ -2049,6 +2049,37 @@ ccart3_t qpms_scatsysw_scattered_E(const qpms_scatsys_at_omega_t *ssw,
|
|||
cvf, where);
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_scatsys_scattered_field_basis_pi(
|
||||
ccart3_t *target,
|
||||
const qpms_scatsys_t *ss,
|
||||
const qpms_ss_pi_t pi,
|
||||
const qpms_bessel_t btyp,
|
||||
const complex double k,
|
||||
const cart3_t where
|
||||
) {
|
||||
qpms_ss_ensure_nonperiodic_a(ss, "qpms_scatsyswk_scattered_field_basis()");
|
||||
QPMS_UNTESTED;
|
||||
const qpms_vswf_set_spec_t *bspec = qpms_ss_bspec_pi(ss, pi);
|
||||
csphvec_t *vswfs_sph; //Single particle contributions in spherical coordinates
|
||||
QPMS_CRASHING_MALLOC(vswfs_sph, bspec->n * sizeof(*vswfs_sph));
|
||||
const cart3_t particle_pos = ss->p[pi].pos;
|
||||
const csph_t kr = sph_cscale(k, cart2sph(
|
||||
cart3_substract(where, particle_pos)));
|
||||
QPMS_ENSURE_SUCCESS(qpms_uvswf_fill(vswfs_sph, bspec, kr, btyp));
|
||||
for(size_t i = 0; i < bspec->n; ++i)
|
||||
target[i] = csphvec2ccart_csph(vswfs_sph[i], kr);
|
||||
|
||||
free(vswfs_sph);
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_scatsysw_scattered_field_basis_pi(
|
||||
ccart3_t *target, const qpms_scatsys_at_omega_t *ssw, const qpms_ss_pi_t pi,
|
||||
const qpms_bessel_t btyp, const cart3_t where) {
|
||||
return qpms_scatsys_scattered_field_basis_pi(target, ssw->ss, pi, btyp,
|
||||
ssw->wavenumber, where);
|
||||
}
|
||||
|
||||
qpms_errno_t qpms_scatsys_scattered_field_basis(
|
||||
ccart3_t *target,
|
||||
const qpms_scatsys_t *ss,
|
||||
|
@ -2058,20 +2089,9 @@ qpms_errno_t qpms_scatsys_scattered_field_basis(
|
|||
) {
|
||||
qpms_ss_ensure_nonperiodic_a(ss, "qpms_scatsyswk_scattered_field_basis()");
|
||||
QPMS_UNTESTED;
|
||||
csphvec_t *vswfs_sph; //Single particle contributions in spherical coordinates
|
||||
QPMS_CRASHING_CALLOC(vswfs_sph, ss->max_bspecn, sizeof(*vswfs_sph));
|
||||
|
||||
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi) {
|
||||
const qpms_vswf_set_spec_t *bspec = qpms_ss_bspec_pi(ss, pi);
|
||||
const cart3_t particle_pos = ss->p[pi].pos;
|
||||
const csph_t kr = sph_cscale(k, cart2sph(
|
||||
cart3_substract(where, particle_pos)));
|
||||
QPMS_ENSURE_SUCCESS(qpms_uvswf_fill(vswfs_sph, bspec, kr, btyp));
|
||||
for(size_t i = 0; i < bspec->n; ++i)
|
||||
target[ss->fecv_pstarts[pi] + i] = csphvec2ccart_csph(vswfs_sph[i], kr);
|
||||
}
|
||||
|
||||
free(vswfs_sph);
|
||||
for (qpms_ss_pi_t pi = 0; pi < ss->p_count; ++pi)
|
||||
QPMS_ENSURE_SUCCESS(qpms_scatsys_scattered_field_basis_pi(
|
||||
target + ss->fecv_pstarts[pi], ss, pi, btyp, k, where));
|
||||
return QPMS_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
@ -757,12 +757,77 @@ qpms_errno_t qpms_scatsys_scattered_field_basis(
|
|||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates a "basis" for electric field of a given particle at a given point.
|
||||
/**
|
||||
* This function evaluates all the included VSWFs from a particle in the system, evaluated
|
||||
* at a given point.
|
||||
*
|
||||
* Finite systems only.
|
||||
*
|
||||
* \see qpms_scatsys_scattered_field_basis() for the whole-array equivalent.
|
||||
*
|
||||
* \see qpms_scatsysw_scattered_field_basis_pi()
|
||||
*/
|
||||
qpms_errno_t qpms_scatsys_scattered_field_basis_pi(
|
||||
ccart3_t *target, ///< Target array of length at least `qpms_ss_bspec_pi(ssw->ss, pi)->n`
|
||||
const qpms_scatsys_t *ss,
|
||||
qpms_ss_pi_t pi, ///< Particle index
|
||||
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
|
||||
complex double wavenumber, ///< Wavenumber of the background medium
|
||||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates a "basis" for electric field at a given point.
|
||||
/**
|
||||
* This function evaluates all the included VSWFs from the particles in the system, evaluated
|
||||
* at a given point. Taking a linear combination of these with the coefficients \a scattcoeff_full[]
|
||||
* would be equivalent to the result of qpms_scatsysw_scattered_E().
|
||||
*
|
||||
* Note that this might require a relatively large amount of memory. Depending
|
||||
* on the application, qpms_scatsysw_scattered_field_basis_pi() might be a better
|
||||
* alternative.
|
||||
*
|
||||
* \see qpms_scatsysw_scattered_field_basis_pi() for the single-particle equivalent.
|
||||
*
|
||||
* \see qpms_scatsys_scattered_field_basis()
|
||||
*
|
||||
* \see qpms_scatsyswk_scattered_field_basis() for periodic systems.
|
||||
*
|
||||
*/
|
||||
qpms_errno_t qpms_scatsysw_scattered_field_basis(
|
||||
ccart3_t *target, ///< Target array of length \a ss->fecv_size
|
||||
const qpms_scatsys_at_omega_t *ssw,
|
||||
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
|
||||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates a "basis" for electric field of a given particle at a given point.
|
||||
/**
|
||||
* This function evaluates all the included VSWFs from a particle in the system, evaluated
|
||||
* at a given point.
|
||||
*
|
||||
* Finite systems only.
|
||||
*
|
||||
* \see qpms_scatsysw_scattered_field_basis() for the whole-array equivalent.
|
||||
*
|
||||
* \see qpms_scatsys_scattered_field_basis_pi()
|
||||
*/
|
||||
qpms_errno_t qpms_scatsysw_scattered_field_basis_pi(
|
||||
ccart3_t *target, ///< Target array of length at least `qpms_ss_bspec_pi(ssw->ss, pi)->n`
|
||||
const qpms_scatsys_at_omega_t *ssw,
|
||||
qpms_ss_pi_t pi, ///< Particle index
|
||||
qpms_bessel_t typ, ///< Bessel function kind to use (for scattered fields, use QPMS_HANKEL_PLUS).
|
||||
cart3_t evalpoint ///< A point \f$ \vect r \f$, at which the field is evaluated.
|
||||
);
|
||||
|
||||
/// Evaluates a "basis" for electric field at a given point.
|
||||
/**
|
||||
* This function evaluates all the included VSWFs from the particles in the system, evaluated
|
||||
* at a given point. Taking a linear combination of these with the coefficients \a scattcoeff_full[]
|
||||
* would be equivalent to the result of qpms_scatsysw_scattered_E().
|
||||
*
|
||||
* \see qpms_scatsysw_scattered_field_basis_pi()
|
||||
*
|
||||
* \see qpms_scatsys_scattered_field_basis()
|
||||
*
|
||||
* \see qpms_scatsyswk_scattered_field_basis() for periodic systems.
|
||||
|
|
Loading…
Reference in New Issue