Formulation of the "simple" 1D problem
Former-commit-id: b93a0a851fe2b11e8c226a96cdfc984e14be2ff6
This commit is contained in:
parent
c00855a1e6
commit
4d38f64b61
|
@ -3758,6 +3758,73 @@ where we used
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
Half-spaces and edge modes
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsection
|
||||||
|
1D
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Let us first consider the
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
simple
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
case without sublattices, so for example, let a set of identical particles
|
||||||
|
particles be placed with spacing
|
||||||
|
\begin_inset Formula $d$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
on the positive
|
||||||
|
\begin_inset Formula $z$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-halfaxis, so their coordinates are in the set
|
||||||
|
\begin_inset Formula $C_{0}=C+\left\{ \vect 0\right\} =d\nats\hat{\vect{\mathbf{z}}}+\left\{ \vect 0\right\} $
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The scattering problem on the particle placed at
|
||||||
|
\begin_inset Formula $\vect n\in C$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can then be described in the per-particle-matrix form as
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
p_{\vect n}-p_{\vect n}^{(0)}=\sum_{\vect n'\in C_{0}\backslash\{\vect n\}}S_{\vect n\leftarrow\vect n'}Tp_{\vect n'},
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix,
|
||||||
|
\begin_inset Formula $S_{\vect n\leftarrow\vect n'}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the translation operator and
|
||||||
|
\begin_inset Formula $p_{\vect n}^{(0)}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
the expansion of the external exciting fields, which can be set to zero
|
||||||
|
in order to find the system's eigenmodes.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
Major TODOs and open questions
|
Major TODOs and open questions
|
||||||
\end_layout
|
\end_layout
|
||||||
|
@ -3793,6 +3860,11 @@ Find a general algorithm for generating the expressions of the Hankel transforms
|
||||||
Three-dimensional case.
|
Three-dimensional case.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
(Appendix) Fourier vs.
|
(Appendix) Fourier vs.
|
||||||
Hankel transform
|
Hankel transform
|
||||||
|
|
Loading…
Reference in New Issue