dudopráce

Former-commit-id: 12b3c37fb72513f52170400341e6e76dd250bf92
This commit is contained in:
Marek Nečada 2020-03-15 15:04:18 +02:00
parent 768a3aab5d
commit 59883d2502
4 changed files with 949 additions and 921 deletions

File diff suppressed because it is too large Load Diff

View File

@ -313,5 +313,14 @@ Next, we study the eigenmode problem of the same rectangular arrays.
as in [TODO REF]. as in [TODO REF].
\end_layout \end_layout
\begin_layout Subsubsection
lMax vs radius
\end_layout
\begin_layout Standard
square lattice of spherical particles at gamma point, modes as a function
of particle radius for several different lMaxes.
\end_layout
\end_body \end_body
\end_document \end_document

View File

@ -193,7 +193,7 @@ status open
frequency-space Maxwell's equations frequency-space Maxwell's equations
\begin_inset Formula \begin_inset Formula
\begin{align*} \begin{align*}
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\ \nabla\times\vect E\left(\vect r,\omega\right)-i\kappa\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0. \eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
\end{align*} \end{align*}
@ -218,7 +218,35 @@ todo define
\end_inset \end_inset
with with wave number
\begin_inset Foot
status open
\begin_layout Plain Layout
Throughout this text, we use the letter
\begin_inset Formula $\kappa$
\end_inset
for wave number in order to avoid confusion with Bloch vector
\begin_inset Formula $\vect k$
\end_inset
and its magnitude, introduced in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Infinite"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_inset
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$ \begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
\end_inset \end_inset
@ -268,18 +296,18 @@ regular
outgoing outgoing
\emph default \emph default
vector spherical wavefunctions (VSWFs) vector spherical wavefunctions (VSWFs)
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$ \begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset \end_inset
and and
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$ \begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset \end_inset
, respectively, defined as follows: , respectively, defined as follows:
\begin_inset Formula \begin_inset Formula
\begin{align} \begin{align}
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ \vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular} \vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
\end{align} \end{align}
\end_inset \end_inset
@ -287,23 +315,59 @@ outgoing
\begin_inset Formula \begin_inset Formula
\begin{align} \begin{align}
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\ \vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\ \vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber & \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
\end{align} \end{align}
\end_inset \end_inset
where where
\begin_inset Formula $\vect r=r\uvec r$ \begin_inset Formula $\vect r=r\uvec r=r\left(\sin\theta\left(\uvec x\cos\phi+\uvec y\sin\phi\right)+\uvec z\cos\theta\right)$
\end_inset \end_inset
, ;
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$ \begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
\end_inset \end_inset
are the regular spherical Bessel function and spherical Hankel function are the regular spherical Bessel function and spherical Hankel function
of the first kind, respectively, as in of the first kind
\begin_inset Foot
status open
\begin_layout Plain Layout
The interpretation of
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset
containing spherical Hankel functions of the first kind as
\emph on
outgoing
\emph default
waves at positive frequencies is associated with a specific choice of sign
in the exponent of time-frequency transformation,
\begin_inset Formula $\psi\left(t\right)=\left(2\pi\right)^{-\pi/2}\int\psi\left(\omega\right)e^{-i\omega t}\,\ud\omega$
\end_inset
.
This matters especially when considering materials with gain or loss: in
this convention, lossy materials will have refractive index (and wavenumber
\begin_inset Formula $\kappa$
\end_inset
, at a given positive frequency) with
\emph on
positive
\emph default
imaginary part, and gainy materials will have it negative and, for example,
Drude-Lorenz model of a lossy medium will have poles in the lower complex
half-plane.
\end_layout
\end_inset
, respectively, as in
\begin_inset CommandInset citation \begin_inset CommandInset citation
LatexCommand cite LatexCommand cite
after "§10.47" after "§10.47"
@ -346,12 +410,16 @@ literal "false"
, i.e. , i.e.
\begin_inset Formula \begin_inset Formula
\[ \[
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right) \ush lm\left(\uvec r\right)=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\] \]
\end_inset \end_inset
where importantly, the Ferrers functions where
\begin_inset Formula $ $
\end_inset
importantly, the Ferrers functions
\begin_inset Formula $\dlmfFer lm$ \begin_inset Formula $\dlmfFer lm$
\end_inset \end_inset

View File

@ -756,10 +756,6 @@ name "fig:ewald branch cuts"
\end_inset \end_inset
\end_layout
\begin_layout Plain Layout
\end_layout \end_layout
\end_inset \end_inset
@ -861,7 +857,7 @@ noprefix "false"
\end_inset \end_inset
, because for them, fortunately, exponentially convergent Ewald-type summation , because for them, fortunately, exponentially convergent Ewald-type summation
formulae have been already developed techniques have been developed
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -874,7 +870,7 @@ add refs
\begin_inset CommandInset citation \begin_inset CommandInset citation
LatexCommand cite LatexCommand cite
key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010" key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010,kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968"
literal "false" literal "false"
\end_inset \end_inset
@ -1009,8 +1005,8 @@ literal "false"
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
In all three dimensionality cases, the lattice sums are divided into short-range In all three lattice dimensionality cases, the lattice sums are divided
and long-range parts, into short-range and long-range parts,
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$ \begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset \end_inset
@ -1037,17 +1033,32 @@ FP: Check sign of s
\begin{multline} \begin{multline}
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\ \sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\ \times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part} +\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa^{2}}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
\end{multline} \end{multline}
\end_inset \end_inset
Here The formal
\begin_inset Formula $\Gamma(a,z)$ \begin_inset Formula $\left(1-\delta_{\vect{R_{n}},-\vect s}\right)$
\end_inset \end_inset
is the incomplete Gamma function. factor here accounts for leaving out the direct excitation of a particle
The last ( by itself, corresponding to the
\begin_inset Formula $\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)$
\end_inset
factor in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The leaving out then causes an additional (
\begin_inset Quotes eld \begin_inset Quotes eld
\end_inset \end_inset
@ -1055,7 +1066,7 @@ self-interaction
\begin_inset Quotes erd \begin_inset Quotes erd
\end_inset \end_inset
) term in ) term on the last line of
\begin_inset CommandInset ref \begin_inset CommandInset ref
LatexCommand eqref LatexCommand eqref
reference "eq:Ewald in 3D short-range part" reference "eq:Ewald in 3D short-range part"
@ -1069,8 +1080,26 @@ noprefix "false"
\begin_inset Formula $\vect s$ \begin_inset Formula $\vect s$
\end_inset \end_inset
coincides with a lattice point, is often noted separately in the literature. coincides with a lattice point.
Strictly speaking, this is not a
\begin_inset Quotes eld
\end_inset
short-range
\begin_inset Quotes erd
\end_inset
term, hence it is often noted separately in the literature; however, we
keep it in
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
for formal convenience.
\begin_inset Formula $\Gamma(a,z)$
\end_inset
is the incomplete Gamma function.
\begin_inset Note Note \begin_inset Note Note
status open status open
@ -1080,6 +1109,10 @@ Poznámka ohledně zahození radiální části u kulových fcí?
\end_inset \end_inset
\end_layout
\begin_layout Standard
The long-range part for cases The long-range part for cases
\begin_inset Formula $d=1,2$ \begin_inset Formula $d=1,2$
\end_inset \end_inset