dudopráce

Former-commit-id: 12b3c37fb72513f52170400341e6e76dd250bf92
This commit is contained in:
Marek Nečada 2020-03-15 15:04:18 +02:00
parent 768a3aab5d
commit 59883d2502
4 changed files with 949 additions and 921 deletions

File diff suppressed because it is too large Load Diff

View File

@ -313,5 +313,14 @@ Next, we study the eigenmode problem of the same rectangular arrays.
as in [TODO REF].
\end_layout
\begin_layout Subsubsection
lMax vs radius
\end_layout
\begin_layout Standard
square lattice of spherical particles at gamma point, modes as a function
of particle radius for several different lMaxes.
\end_layout
\end_body
\end_document

View File

@ -193,7 +193,7 @@ status open
frequency-space Maxwell's equations
\begin_inset Formula
\begin{align*}
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
\nabla\times\vect E\left(\vect r,\omega\right)-i\kappa\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
\end{align*}
@ -218,7 +218,35 @@ todo define
\end_inset
with
with wave number
\begin_inset Foot
status open
\begin_layout Plain Layout
Throughout this text, we use the letter
\begin_inset Formula $\kappa$
\end_inset
for wave number in order to avoid confusion with Bloch vector
\begin_inset Formula $\vect k$
\end_inset
and its magnitude, introduced in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Infinite"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_inset
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
\end_inset
@ -268,18 +296,18 @@ regular
outgoing
\emph default
vector spherical wavefunctions (VSWFs)
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset
and
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset
, respectively, defined as follows:
\begin_inset Formula
\begin{align}
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
\vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
\end{align}
\end_inset
@ -287,23 +315,59 @@ outgoing
\begin_inset Formula
\begin{align}
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
\vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
\end{align}
\end_inset
where
\begin_inset Formula $\vect r=r\uvec r$
\begin_inset Formula $\vect r=r\uvec r=r\left(\sin\theta\left(\uvec x\cos\phi+\uvec y\sin\phi\right)+\uvec z\cos\theta\right)$
\end_inset
,
;
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
\end_inset
are the regular spherical Bessel function and spherical Hankel function
of the first kind, respectively, as in
of the first kind
\begin_inset Foot
status open
\begin_layout Plain Layout
The interpretation of
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset
containing spherical Hankel functions of the first kind as
\emph on
outgoing
\emph default
waves at positive frequencies is associated with a specific choice of sign
in the exponent of time-frequency transformation,
\begin_inset Formula $\psi\left(t\right)=\left(2\pi\right)^{-\pi/2}\int\psi\left(\omega\right)e^{-i\omega t}\,\ud\omega$
\end_inset
.
This matters especially when considering materials with gain or loss: in
this convention, lossy materials will have refractive index (and wavenumber
\begin_inset Formula $\kappa$
\end_inset
, at a given positive frequency) with
\emph on
positive
\emph default
imaginary part, and gainy materials will have it negative and, for example,
Drude-Lorenz model of a lossy medium will have poles in the lower complex
half-plane.
\end_layout
\end_inset
, respectively, as in
\begin_inset CommandInset citation
LatexCommand cite
after "§10.47"
@ -346,12 +410,16 @@ literal "false"
, i.e.
\begin_inset Formula
\[
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\ush lm\left(\uvec r\right)=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\]
\end_inset
where importantly, the Ferrers functions
where
\begin_inset Formula $ $
\end_inset
importantly, the Ferrers functions
\begin_inset Formula $\dlmfFer lm$
\end_inset

View File

@ -756,10 +756,6 @@ name "fig:ewald branch cuts"
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
@ -861,7 +857,7 @@ noprefix "false"
\end_inset
, because for them, fortunately, exponentially convergent Ewald-type summation
formulae have been already developed
techniques have been developed
\begin_inset Note Note
status open
@ -874,7 +870,7 @@ add refs
\begin_inset CommandInset citation
LatexCommand cite
key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010"
key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010,kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968"
literal "false"
\end_inset
@ -1009,8 +1005,8 @@ literal "false"
\end_layout
\begin_layout Standard
In all three dimensionality cases, the lattice sums are divided into short-range
and long-range parts,
In all three lattice dimensionality cases, the lattice sums are divided
into short-range and long-range parts,
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
@ -1037,17 +1033,32 @@ FP: Check sign of s
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa^{2}}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
\end{multline}
\end_inset
Here
\begin_inset Formula $\Gamma(a,z)$
The formal
\begin_inset Formula $\left(1-\delta_{\vect{R_{n}},-\vect s}\right)$
\end_inset
is the incomplete Gamma function.
The last (
factor here accounts for leaving out the direct excitation of a particle
by itself, corresponding to the
\begin_inset Formula $\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)$
\end_inset
factor in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The leaving out then causes an additional (
\begin_inset Quotes eld
\end_inset
@ -1055,7 +1066,7 @@ self-interaction
\begin_inset Quotes erd
\end_inset
) term in
) term on the last line of
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
@ -1069,8 +1080,26 @@ noprefix "false"
\begin_inset Formula $\vect s$
\end_inset
coincides with a lattice point, is often noted separately in the literature.
coincides with a lattice point.
Strictly speaking, this is not a
\begin_inset Quotes eld
\end_inset
short-range
\begin_inset Quotes erd
\end_inset
term, hence it is often noted separately in the literature; however, we
keep it in
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
for formal convenience.
\begin_inset Formula $\Gamma(a,z)$
\end_inset
is the incomplete Gamma function.
\begin_inset Note Note
status open
@ -1080,6 +1109,10 @@ Poznámka ohledně zahození radiální části u kulových fcí?
\end_inset
\end_layout
\begin_layout Standard
The long-range part for cases
\begin_inset Formula $d=1,2$
\end_inset