dudopráce
Former-commit-id: 12b3c37fb72513f52170400341e6e76dd250bf92
This commit is contained in:
parent
768a3aab5d
commit
59883d2502
1704
lepaper/Tmatrix.bib
1704
lepaper/Tmatrix.bib
File diff suppressed because it is too large
Load Diff
|
@ -313,5 +313,14 @@ Next, we study the eigenmode problem of the same rectangular arrays.
|
|||
as in [TODO REF].
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
lMax vs radius
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
square lattice of spherical particles at gamma point, modes as a function
|
||||
of particle radius for several different lMaxes.
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
||||
|
|
|
@ -193,7 +193,7 @@ status open
|
|||
frequency-space Maxwell's equations
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
|
||||
\nabla\times\vect E\left(\vect r,\omega\right)-i\kappa\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
|
||||
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
|
||||
\end{align*}
|
||||
|
||||
|
@ -218,7 +218,35 @@ todo define
|
|||
|
||||
\end_inset
|
||||
|
||||
with
|
||||
with wave number
|
||||
\begin_inset Foot
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Throughout this text, we use the letter
|
||||
\begin_inset Formula $\kappa$
|
||||
\end_inset
|
||||
|
||||
for wave number in order to avoid confusion with Bloch vector
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
and its magnitude, introduced in Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Infinite"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
||||
\end_inset
|
||||
|
||||
|
@ -268,18 +296,18 @@ regular
|
|||
outgoing
|
||||
\emph default
|
||||
vector spherical wavefunctions (VSWFs)
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\vswfrtlm 1lm\left(\kappa\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfrtlm 2lm\left(\kappa\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
@ -287,23 +315,59 @@ outgoing
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
\vswfouttlm 1lm\left(\kappa\vect r\right) & =h_{l}^{\left(1\right)}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
|
||||
\vswfouttlm 2lm\left(\kappa\vect r\right) & =\frac{1}{kr}\frac{\ud\left(\kappa rh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(\kappa r\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
|
||||
\end{align}
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\vect r=r\uvec r$
|
||||
\begin_inset Formula $\vect r=r\uvec r=r\left(\sin\theta\left(\uvec x\cos\phi+\uvec y\sin\phi\right)+\uvec z\cos\theta\right)$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
;
|
||||
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
|
||||
\end_inset
|
||||
|
||||
are the regular spherical Bessel function and spherical Hankel function
|
||||
of the first kind, respectively, as in
|
||||
of the first kind
|
||||
\begin_inset Foot
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
The interpretation of
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
containing spherical Hankel functions of the first kind as
|
||||
\emph on
|
||||
outgoing
|
||||
\emph default
|
||||
waves at positive frequencies is associated with a specific choice of sign
|
||||
in the exponent of time-frequency transformation,
|
||||
\begin_inset Formula $\psi\left(t\right)=\left(2\pi\right)^{-\pi/2}\int\psi\left(\omega\right)e^{-i\omega t}\,\ud\omega$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This matters especially when considering materials with gain or loss: in
|
||||
this convention, lossy materials will have refractive index (and wavenumber
|
||||
|
||||
\begin_inset Formula $\kappa$
|
||||
\end_inset
|
||||
|
||||
, at a given positive frequency) with
|
||||
\emph on
|
||||
positive
|
||||
\emph default
|
||||
imaginary part, and gainy materials will have it negative and, for example,
|
||||
Drude-Lorenz model of a lossy medium will have poles in the lower complex
|
||||
half-plane.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
, respectively, as in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "§10.47"
|
||||
|
@ -346,12 +410,16 @@ literal "false"
|
|||
, i.e.
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
||||
\ush lm\left(\uvec r\right)=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where importantly, the Ferrers functions
|
||||
where
|
||||
\begin_inset Formula $ $
|
||||
\end_inset
|
||||
|
||||
importantly, the Ferrers functions
|
||||
\begin_inset Formula $\dlmfFer lm$
|
||||
\end_inset
|
||||
|
||||
|
|
|
@ -756,10 +756,6 @@ name "fig:ewald branch cuts"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -861,7 +857,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
, because for them, fortunately, exponentially convergent Ewald-type summation
|
||||
formulae have been already developed
|
||||
techniques have been developed
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -874,7 +870,7 @@ add refs
|
|||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010"
|
||||
key "moroz_quasi-periodic_2006,linton_one-_2009,linton_lattice_2010,kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
@ -1009,8 +1005,8 @@ literal "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In all three dimensionality cases, the lattice sums are divided into short-range
|
||||
and long-range parts,
|
||||
In all three lattice dimensionality cases, the lattice sums are divided
|
||||
into short-range and long-range parts,
|
||||
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -1037,17 +1033,32 @@ FP: Check sign of s
|
|||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
|
||||
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
|
||||
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa^{2}}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
Here
|
||||
\begin_inset Formula $\Gamma(a,z)$
|
||||
The formal
|
||||
\begin_inset Formula $\left(1-\delta_{\vect{R_{n}},-\vect s}\right)$
|
||||
\end_inset
|
||||
|
||||
is the incomplete Gamma function.
|
||||
The last (
|
||||
factor here accounts for leaving out the direct excitation of a particle
|
||||
by itself, corresponding to the
|
||||
\begin_inset Formula $\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)$
|
||||
\end_inset
|
||||
|
||||
factor in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The leaving out then causes an additional (
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
|
@ -1055,7 +1066,7 @@ self-interaction
|
|||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
) term in
|
||||
) term on the last line of
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Ewald in 3D short-range part"
|
||||
|
@ -1069,8 +1080,26 @@ noprefix "false"
|
|||
\begin_inset Formula $\vect s$
|
||||
\end_inset
|
||||
|
||||
coincides with a lattice point, is often noted separately in the literature.
|
||||
coincides with a lattice point.
|
||||
Strictly speaking, this is not a
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
short-range
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
term, hence it is often noted separately in the literature; however, we
|
||||
keep it in
|
||||
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
|
||||
\end_inset
|
||||
|
||||
for formal convenience.
|
||||
|
||||
\begin_inset Formula $\Gamma(a,z)$
|
||||
\end_inset
|
||||
|
||||
is the incomplete Gamma function.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -1080,6 +1109,10 @@ Poznámka ohledně zahození radiální části u kulových fcí?
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The long-range part for cases
|
||||
\begin_inset Formula $d=1,2$
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue