[ewald] chybička
Former-commit-id: 8db8771c6e111256d0a933996f351960fcb799df
This commit is contained in:
parent
814ea36415
commit
6016fcd55d
|
@ -1551,16 +1551,16 @@ One problematic element here is the gamma function
|
||||||
\begin_inset Formula $\text{Γ}\left(2-q+n\right)$
|
\begin_inset Formula $\text{Γ}\left(2-q+n\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
which is singular if the arguments are negative integers, i.e.
|
which is singular if the argument is zero or negative integer, i.e.
|
||||||
if
|
if
|
||||||
\begin_inset Formula $q-n\ge3$
|
\begin_inset Formula $q-n\ge2$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
; but at least the necessary minimum of
|
; which is painful especially because of the case
|
||||||
\begin_inset Formula $q=1,2$
|
\begin_inset Formula $q=2,n=0$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
would be covered this way.
|
.
|
||||||
The associated Legendre function can be expressed as a finite
|
The associated Legendre function can be expressed as a finite
|
||||||
\begin_inset Quotes eld
|
\begin_inset Quotes eld
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -1636,14 +1636,7 @@ reference "tab:Asymptotical-behaviour-Mathematica"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, which is unfortunately important.
|
, which is unfortunately important.
|
||||||
But if I have not made some mistake, the expression
|
|
||||||
\begin_inset CommandInset ref
|
|
||||||
LatexCommand eqref
|
|
||||||
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
|
|
||||||
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
is applicable for this case.
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -2879,7 +2872,7 @@ where the spherical Hankel transform
|
||||||
2)
|
2)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2889,7 +2882,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
||||||
3)
|
3)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2902,7 +2895,7 @@ so it is not unitary.
|
||||||
An unitary convention would look like this:
|
An unitary convention would look like this:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2956,7 +2949,7 @@ where the Hankel transform of order
|
||||||
is defined as
|
is defined as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue