Trying to draw the images

Former-commit-id: 25bf663661f3428ea2a9d7ea0558a479c2a3f50b
This commit is contained in:
Marek Nečada 2020-06-05 16:43:16 +03:00
parent b80e7607f8
commit 6648e926db
4 changed files with 1657 additions and 12 deletions

View File

@ -469,9 +469,7 @@ sideways false
status open
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figs/beyn_lMax_cutoff_Au_sphere.pdf
width 100text%
@ -479,10 +477,9 @@ status open
\end_inset
\end_layout
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
Consequences of multipole degree cutoff: Eigenfrequencies found with Beyn's
algorithm for an infinite square lattice of golden spherical nanoparticles
with varying particle size.
@ -498,8 +495,13 @@ name "square lattice var lMax, r at gamma point Au"
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status open
status collapsed
\begin_layout Plain Layout
\begin_inset Float figure

1629
lepaper/figs/hex/pokus.svg Normal file

File diff suppressed because it is too large Load Diff

After

Width:  |  Height:  |  Size: 103 KiB

View File

@ -768,7 +768,16 @@ empty
\begin_inset Formula $\gamma(z)$
\end_inset
as defined in
if the branch is selected to be continuous for
\begin_inset Formula $-3\pi/2<\arg\left(z-1\right)<\pi/2$
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
as defined in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lilgamma_old"
@ -776,6 +785,11 @@ plural "false"
caps "false"
noprefix "false"
\end_inset
\end_layout
\end_inset
(blue, circular shape).
@ -1415,11 +1429,11 @@ FP: check sign of
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{2}\mathcal{A}}\pi^{3/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{l-\left|m\right|}\left(-1\right)^{j}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+1}\Delta_{j}\left(\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}},-i\kappa\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)s_{\perp}\right)\times\\
\times\sum_{\begin{array}{c}
s\\
\times\sum_{\substack{s\\
j\le s\le\min\left(2j,l-\left|m\right|\right)\\
l-n+\left|m\right|\,\mathrm{even}
\end{array}}\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D}
}
}\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D}
\end{multline}
\end_inset