Notes on power matrix

Former-commit-id: 004525ac721c833bdf6d5d71c0780a52dde9df1e
This commit is contained in:
Marek Nečada 2017-09-06 12:43:49 +00:00
parent 150c77c31e
commit 680e6f8573
1 changed files with 162 additions and 3 deletions

View File

@ -188,6 +188,21 @@ theorems-ams
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\bra}[1]{\left\langle #1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ket}[1]{\left|#1\right\rangle }
\end_inset
\begin_inset FormulaMacro
\newcommand{\sci}[1]{\mathfrak{#1}}
\end_inset
\end_layout \end_layout
\begin_layout Title \begin_layout Title
@ -201,7 +216,7 @@ Marek Nečada
\begin_layout Abstract \begin_layout Abstract
This memo deals with the formulae for radiation transfer, absorption, extinction This memo deals with the formulae for radiation transfer, absorption, extinction
for single particle and composite system of several nanoparticles. for single particle and composite system of several nanoparticles.
I also derive some natural conditions on I also derive some natural conditions on the
\begin_inset Formula $T$ \begin_inset Formula $T$
\end_inset \end_inset
@ -215,6 +230,16 @@ Conventions
\begin_layout Standard \begin_layout Standard
If not stated otherwise, Kristensson's notation and normalisation conventions If not stated otherwise, Kristensson's notation and normalisation conventions
are used in this memo. are used in this memo.
That means, among other things, that the
\begin_inset Formula $T$
\end_inset
-matrix is dimensionless and the expansion coefficients of spherical waves
have units of
\begin_inset Formula $\sqrt{\mbox{power}}$
\end_inset
.
\end_layout \end_layout
\begin_layout Section \begin_layout Section
@ -338,14 +363,14 @@ reference "eq:T-matrix definition"
we get we get
\begin_inset Formula \begin_inset Formula
\begin{eqnarray} \begin{eqnarray}
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\ P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\ & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type} & = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
\end{eqnarray} \end{eqnarray}
\end_inset \end_inset
a condition that should be checked e.g. a condition that should be ensured to be true e.g.
for the for the
\begin_inset Formula $T$ \begin_inset Formula $T$
\end_inset \end_inset
@ -410,5 +435,139 @@ reference "eq:Absorption is never negative for single wave type"
satisfied? satisfied?
\end_layout \end_layout
\begin_layout Standard
Let me rewrite the expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
(without any assumptions about the values of the coefficients
\begin_inset Formula $a_{n}$
\end_inset
) in Dirac notation where the ket
\begin_inset Formula $\ket a$
\end_inset
is the vector of all the exciting wave coefficients
\begin_inset Formula $a_{n}$
\end_inset
.
Furthemore,
\begin_inset Formula $\ket{e_{m}}$
\end_inset
is the unit vector containing one for the wave indexed by
\begin_inset Formula $m$
\end_inset
and zeros for the rest, so that
\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
\end_inset
.
The general expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
and condition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
then reads
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
& = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
& = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
\end{eqnarray}
\end_inset
giving the following condition on the
\begin_inset Formula $T$
\end_inset
-matrix:
\end_layout
\begin_layout Proposition
A
\begin_inset Formula $T$
\end_inset
-matrix
\begin_inset Formula $T$
\end_inset
is unphysical unless the matrix
\begin_inset Formula
\begin{equation}
W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
\end{equation}
\end_inset
is negative (semi)definite.
\end_layout
\begin_layout Standard
Obviously, matrix
\begin_inset Formula $W$
\end_inset
is self-adjoint and it has a clear interpretation given by
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative in Dirac notation"
\end_inset
for an exciting field given by its expansion coefficient vector
\begin_inset Formula $\ket a$
\end_inset
,
\begin_inset Formula $-P=-\bra aW\ket a$
\end_inset
is the power absorbed by the scatterer.
\end_layout
\begin_layout Section
Multiple scattering
\end_layout
\begin_layout Standard
The purpose of this section is to clarify the formulae for absorption and
extinction in a system of multiple scatterers.
Let the scatterers be indexed by fraktur letters, so the power
\begin_inset Quotes eld
\end_inset
generated
\begin_inset Quotes erd
\end_inset
by nanoparticle
\begin_inset Formula $\sci k$
\end_inset
will be denoted as
\begin_inset Formula $P^{\sci k}$
\end_inset
.
\end_layout
\end_body \end_body
\end_document \end_document