Notes on power matrix
Former-commit-id: 004525ac721c833bdf6d5d71c0780a52dde9df1e
This commit is contained in:
parent
150c77c31e
commit
680e6f8573
|
@ -188,6 +188,21 @@ theorems-ams
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\bra}[1]{\left\langle #1\right|}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\ket}[1]{\left|#1\right\rangle }
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\sci}[1]{\mathfrak{#1}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Title
|
\begin_layout Title
|
||||||
|
@ -201,7 +216,7 @@ Marek Nečada
|
||||||
\begin_layout Abstract
|
\begin_layout Abstract
|
||||||
This memo deals with the formulae for radiation transfer, absorption, extinction
|
This memo deals with the formulae for radiation transfer, absorption, extinction
|
||||||
for single particle and composite system of several nanoparticles.
|
for single particle and composite system of several nanoparticles.
|
||||||
I also derive some natural conditions on
|
I also derive some natural conditions on the
|
||||||
\begin_inset Formula $T$
|
\begin_inset Formula $T$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -215,6 +230,16 @@ Conventions
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
If not stated otherwise, Kristensson's notation and normalisation conventions
|
If not stated otherwise, Kristensson's notation and normalisation conventions
|
||||||
are used in this memo.
|
are used in this memo.
|
||||||
|
That means, among other things, that the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix is dimensionless and the expansion coefficients of spherical waves
|
||||||
|
have units of
|
||||||
|
\begin_inset Formula $\sqrt{\mbox{power}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
|
@ -338,14 +363,14 @@ reference "eq:T-matrix definition"
|
||||||
we get
|
we get
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{eqnarray}
|
\begin{eqnarray}
|
||||||
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\
|
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
|
||||||
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
|
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
|
||||||
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
|
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
|
||||||
\end{eqnarray}
|
\end{eqnarray}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
a condition that should be checked e.g.
|
a condition that should be ensured to be true e.g.
|
||||||
for the
|
for the
|
||||||
\begin_inset Formula $T$
|
\begin_inset Formula $T$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -410,5 +435,139 @@ reference "eq:Absorption is never negative for single wave type"
|
||||||
satisfied?
|
satisfied?
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Let me rewrite the expression
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Absorption is never negative with T"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(without any assumptions about the values of the coefficients
|
||||||
|
\begin_inset Formula $a_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) in Dirac notation where the ket
|
||||||
|
\begin_inset Formula $\ket a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the vector of all the exciting wave coefficients
|
||||||
|
\begin_inset Formula $a_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Furthemore,
|
||||||
|
\begin_inset Formula $\ket{e_{m}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the unit vector containing one for the wave indexed by
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and zeros for the rest, so that
|
||||||
|
\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The general expression
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Absorption is never negative with T"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and condition
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Absorption is never negative"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
then reads
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray}
|
||||||
|
P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
|
||||||
|
& = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
|
||||||
|
& = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
|
||||||
|
\end{eqnarray}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
giving the following condition on the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix:
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Proposition
|
||||||
|
A
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-matrix
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is unphysical unless the matrix
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is negative (semi)definite.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Obviously, matrix
|
||||||
|
\begin_inset Formula $W$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is self-adjoint and it has a clear interpretation given by
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Absorption is never negative in Dirac notation"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
– for an exciting field given by its expansion coefficient vector
|
||||||
|
\begin_inset Formula $\ket a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $-P=-\bra aW\ket a$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the power absorbed by the scatterer.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
Multiple scattering
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The purpose of this section is to clarify the formulae for absorption and
|
||||||
|
extinction in a system of multiple scatterers.
|
||||||
|
Let the scatterers be indexed by fraktur letters, so the power
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
generated
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
by nanoparticle
|
||||||
|
\begin_inset Formula $\sci k$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
will be denoted as
|
||||||
|
\begin_inset Formula $P^{\sci k}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\end_body
|
\end_body
|
||||||
\end_document
|
\end_document
|
||||||
|
|
Loading…
Reference in New Issue