WIP finite systems + copypasta from hexlaser SM

Former-commit-id: 7fa2ae8308b4aa62fdb0986ac0ed669fad29d2a1
This commit is contained in:
Marek Nečada 2019-07-18 22:50:01 +03:00
parent e30eb45a36
commit 74655c0210
4 changed files with 1088 additions and 9 deletions

View File

@ -41,11 +41,11 @@
\papersize default
\use_geometry false
\use_package amsmath 2
\use_package amssymb 1
\use_package amssymb 2
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
@ -158,7 +158,12 @@
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\newcommand{\spharm}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{\spharm{#1}{#2}}
\end_inset
@ -232,6 +237,66 @@
\end_inset
\begin_inset FormulaMacro
\newcommand{\transop}{S}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vswfr}[3]{\vect{\vect v}_{#1#2#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vswfs}[3]{\vect{\vect u}_{#1#2#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vspharm}[3]{\vect A_{#1#2#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uvec}[1]{\vect{\hat{#1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffs}{f}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffsi}[3]{\coeffs_{#1#2}^{#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffsip}[4]{\coeffs_{#1}^{#2,#3,#4}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffr}{a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffri}[3]{\coeffr_{#1#2}^{#3}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffrip}[4]{\coeffr_{#1}^{#2,#3,#4}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\coeffripext}[4]{\coeffr_{\mathrm{ext}#1}^{#2,#3,#4}}
\end_inset
\end_layout
\begin_layout Title
@ -440,6 +505,16 @@ filename "intro.lyx"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand include
filename "finite-old.lyx"
\end_inset
\end_layout
\begin_layout Standard
@ -460,6 +535,16 @@ filename "infinite.lyx"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand include
filename "infinite-old.lyx"
\end_inset
\end_layout
\begin_layout Standard

378
lepaper/finite-old.lyx Normal file
View File

@ -0,0 +1,378 @@
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language swedish
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Subsection
\lang english
The multiple-scattering problem
\begin_inset CommandInset label
LatexCommand label
name "sub:The-multiple-scattering-problem"
\end_inset
\end_layout
\begin_layout Standard
\lang english
In the
\begin_inset Formula $T$
\end_inset
-matrix approach, scattering properties of single nanoparticles in a homogeneous
medium are first computed in terms of vector sperical wavefunctions (VSWFs)—the
field incident onto the
\begin_inset Formula $n$
\end_inset
-th nanoparticle from external sources can be expanded as
\begin_inset Formula
\begin{equation}
\vect E_{n}^{\mathrm{inc}}(\vect r)=\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{t=\mathrm{E},\mathrm{M}}\coeffrip nlmt\vswfr lmt\left(\vect r_{n}\right)\label{eq:E_inc}
\end{equation}
\end_inset
where
\begin_inset Formula $\vect r_{n}=\vect r-\vect R_{n}$
\end_inset
,
\begin_inset Formula $\vect R_{n}$
\end_inset
being the position of the centre of
\begin_inset Formula $n$
\end_inset
-th nanoparticle and
\begin_inset Formula $\vswfr lmt$
\end_inset
are the regular VSWFs which can be expressed in terms of regular spherical
Bessel functions of
\begin_inset Formula $j_{k}\left(\left|\vect r_{n}\right|\right)$
\end_inset
and spherical harmonics
\begin_inset Formula $\ush km\left(\hat{\vect r}_{n}\right)$
\end_inset
; the expressions, together with a proof that the VSWFs span all the solutions
of vector Helmholtz equation around the particle, justifying the expansion,
can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapter 7"
key "kristensson_scattering_2016"
\end_inset
(care must be taken because of varying normalisation and phase conventions).
On the other hand, the field scattered by the particle can be (outside
the particle's circumscribing sphere) expanded in terms of singular VSWFs
\begin_inset Formula $\vswfs lmt$
\end_inset
which differ from the regular ones by regular spherical Bessel functions
being replaced with spherical Hankel functions
\begin_inset Formula $h_{k}^{(1)}\left(\left|\vect r_{n}\right|\right)$
\end_inset
,
\begin_inset Formula
\begin{equation}
\vect E_{n}^{\mathrm{scat}}\left(\vect r\right)=\sum_{l,m,t}\coeffsip nlmt\vswfs lmt\left(\vect r_{n}\right).\label{eq:E_scat}
\end{equation}
\end_inset
The expansion coefficients
\begin_inset Formula $\coeffsip nlmt$
\end_inset
,
\begin_inset Formula $t=\mathrm{E},\mathrm{M}$
\end_inset
are related to the electric and magnetic multipole polarization amplitudes
of the nanoparticle.
\end_layout
\begin_layout Standard
\lang english
At a given frequency, assuming the system is linear, the relation between
the expansion coefficients in the VSWF bases is given by the so-called
\begin_inset Formula $T$
\end_inset
-matrix,
\begin_inset Formula
\begin{equation}
\coeffsip nlmt=\sum_{l',m',t'}T_{n}^{lmt;l'm't'}\coeffrip n{l'}{m'}{t'}.\label{eq:Tmatrix definition}
\end{equation}
\end_inset
The
\begin_inset Formula $T$
\end_inset
-matrix is given by the shape and composition of the particle and fully
describes its scattering properties.
In theory it is infinite-dimensional, but in practice (at least for subwaveleng
th nanoparticles) its elements drop very quickly to negligible values with
growing degree indices
\begin_inset Formula $l,l'$
\end_inset
, enabling to take into account only the elements up to some finite degree,
\begin_inset Formula $l,l'\le l_{\mathrm{max}}$
\end_inset
.
The
\begin_inset Formula $T$
\end_inset
-matrix can be calculated numerically using various methods; here we used
the scuff-tmatrix tool from the SCUFF-EM suite
\begin_inset CommandInset citation
LatexCommand cite
key "SCUFF2,reid_efficient_2015"
\end_inset
, which implements the boundary element method (BEM).
\end_layout
\begin_layout Standard
\lang english
The singular VSWFs originating at
\begin_inset Formula $\vect R_{n}$
\end_inset
can be then re-expanded around another origin (nanoparticle location)
\begin_inset Formula $\vect R_{n'}$
\end_inset
in terms of regular VSWFs,
\begin_inset Formula
\begin{equation}
\begin{split}\svwfs lmt\left(\vect r_{n}\right)=\sum_{l',m',t'}\transop^{l'm't';lmt}\left(\vect R_{n'}-\vect R_{n}\right)\vswfr{l'}{m'}{t'}\left(\vect r_{n'}\right),\\
\left|\vect r_{n'}\right|<\left|\vect R_{n'}-\vect R_{n}\right|.
\end{split}
\label{eq:translation op def}
\end{equation}
\end_inset
Analytical expressions for the translation operator
\begin_inset Formula $\transop^{lmt;l'm't'}\left(\vect R_{n'}-\vect R_{n}\right)$
\end_inset
can be found in
\begin_inset CommandInset citation
LatexCommand cite
key "xu_efficient_1998"
\end_inset
.
\end_layout
\begin_layout Standard
\lang english
If we write the field incident onto the
\begin_inset Formula $n$
\end_inset
-th nanoparticle as the sum of fields scattered from all the other nanoparticles
and an external field
\begin_inset Formula $\vect E_{0}$
\end_inset
(which we also expand around each nanoparticle,
\begin_inset Formula $\vect E_{0}\left(\vect r\right)=\sum_{l,m,t}\coeffripext nlmt\vswfr lmt\left(\vect r_{n}\right)$
\end_inset
),
\begin_inset Formula
\[
\vect E_{n}^{\mathrm{inc}}\left(\vect r\right)=\vect E_{0}\left(\vect r\right)+\sum_{n'\ne n}\vect E_{n'}^{\mathrm{scat}}\left(\vect r\right)
\]
\end_inset
and use eqs.
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E_inc"
\end_inset
)(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:translation op def"
\end_inset
), we obtain a set of linear equations for the electromagnetic response
(multiple scattering) of the whole set of nanoparticles,
\begin_inset Formula
\begin{equation}
\begin{split}\coeffrip nlmt=\coeffripext nlmt+\sum_{n'\ne n}\sum_{l',m',t'}\transop^{lmt;l'm't'}\left(\vect R_{n}-\vect R_{n'}\right)\\
\times\sum_{l'',m'',t''}T_{n'}^{l'm't';l''m''t''}\coeffrip{n'}{l''}{m''}{t''}.
\end{split}
\label{eq:multiplescattering element-wise}
\end{equation}
\end_inset
It is practical to get rid of the VSWF indices, rewriting (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiplescattering element-wise"
\end_inset
) in a per-particle matrix form
\begin_inset Formula
\begin{equation}
\coeffr_{n}=\coeffr_{\mathrm{ext}(n)}+\sum_{n'\ne n}S_{n,n'}T_{n'}p_{n'}\label{eq:multiple scattering per particle p}
\end{equation}
\end_inset
and to reformulate the problem using (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Tmatrix definition"
\end_inset
) in terms of the
\begin_inset Formula $\coeffs$
\end_inset
-coefficients which describe the multipole excitations of the particles
\begin_inset Formula
\begin{equation}
\coeffs_{n}-T_{n}\sum_{n'\ne n}S_{n,n'}\coeffs_{n'}=T_{n}\coeffr_{\mathrm{ext}(n)}.\label{eq:multiple scattering per particle a}
\end{equation}
\end_inset
Knowing
\begin_inset Formula $T_{n},S_{n,n'},\coeffr_{\mathrm{ext}(n)}$
\end_inset
, the nanoparticle excitations
\begin_inset Formula $a_{n}$
\end_inset
can be solved by standard linear algebra methods.
The total scattered field anywhere outside the particles' circumscribing
spheres is then obtained by summing the contributions (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:E_scat"
\end_inset
) from all particles.
\end_layout
\end_body
\end_document

View File

@ -166,6 +166,10 @@ ity
and magnetic permeability
\begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$
\end_inset
depending only on (angular) frequency
\begin_inset Formula $\omega$
\end_inset
, and that the whole system is linear, i.e.
@ -176,7 +180,7 @@ ity
\end_inset
must satisfy the homogeneous vector Helmholtz equation
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0$
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0$
\end_inset
@ -193,16 +197,44 @@ todo define
\end_inset
with
\begin_inset Formula $k=TODO$
with wavenumber
\begin_inset Formula $k=\omega\sqrt{\mu\epsilon}/c_{0}$
\end_inset
[TODO REF Jackson?].
, and transversality condition
\begin_inset Formula $\nabla\cdot\vect{\Psi}\left(\vect r,\omega\right)=0$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "jackson_classical_1998"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
[TODO more specific REF Jackson?]
\end_layout
\end_inset
.
\lang english
\begin_inset Note Note
status open
\begin_layout Plain Layout
Its solutions (TODO under which conditions? What vector space do the SVWFs
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
\end_layout
\begin_layout Standard
\begin_layout Plain Layout
\lang english
Throughout this text, we will use the same normalisation conventions as
@ -216,12 +248,120 @@ key "kristensson_scattering_2016"
.
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
\lang english
Spherical waves
\end_layout
\begin_layout Standard
Inside a ball
\begin_inset Formula $B_{R}\left(\vect{r'}\right)\subset\medium$
\end_inset
with radius
\begin_inset Formula $R$
\end_inset
centered at
\begin_inset Formula $\vect{r'}$
\end_inset
, the transversal solutions of the vector Helmholtz equation can be expressed
in the basis of the regular transversal
\emph on
vector spherical wavefunctions
\emph default
(VSWFs)
\begin_inset Formula $\vswfr{\tau}lm\left(k\left(\vect r-\vect{r'}\right)\right)$
\end_inset
, which are found by separation of variables in spherical coordinates.
There is a large variety of VSWF normalisation and phase conventions in
the literature (and existing software), which can lead to great confusion
using them.
Throughout this text, we use the following convention, adopted from [Kristensso
n 2014]:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray}
\vswfr 1lm\left(k\vect r\right) & = & j_{l}\left(kr\right)\vspharm 1lm\left(\uvec r\right),\nonumber \\
\vswfr 2lm\left(k\vect r\right) & = & \frac{1}{kr}\frac{\ud\left(kr\, j_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vspharm 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vspharm 3lm\left(\uvec r\right),\label{eq:regular vswf}\\
& & \qquad l=1,2,\dots;\, m=-l,-l+1,\dots,l;\nonumber
\end{eqnarray}
\end_inset
where we separated the position variable into its magnitude
\begin_inset Formula $r$
\end_inset
and a unit vector
\begin_inset Formula $\uvec r$
\end_inset
,
\begin_inset Formula $\vect r=r\uvec r$
\end_inset
, the
\emph on
vector spherical harmonics
\emph default
\begin_inset Formula $\vspharm{\sigma}lm$
\end_inset
are defined as
\begin_inset Formula
\begin{eqnarray}
\vspharm 1lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\nabla\spharm lm\left(\uvec r\right)\times\vect r,\nonumber \\
\vspharm 2lm\left(\uvec r\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\spharm lm\left(\uvec r\right),\label{eq:vspharm}\\
\vspharm 2lm\left(\uvec r\right) & = & \uvec r\spharm lm\left(\uvec r\right),\nonumber
\end{eqnarray}
\end_inset
and for the scalar spherical harmonics
\begin_inset Formula $\spharm lm$
\end_inset
we use the convention from [REF DLMF 14.30.1],
\begin_inset Formula
\begin{equation}
\spharm lm\left(\uvec r\right)=\spharm lm\left(\theta,\phi\right)=\left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\mathsf{P}_{l}^{m}\left(\cos\theta\right),\label{eq:spharm}
\end{equation}
\end_inset
where the Condon-Shortley phase factor
\begin_inset Formula $\left(-1\right)^{m}$
\end_inset
is already included in the definition of Ferrers function
\begin_inset Formula $\mathsf{P}_{l}^{m}\left(\cos\theta\right)$
\end_inset
[as in DLMF 14].
The main reason for this choice of VSWF
\emph on
normalisation
\emph default
is that it leads to simple formulae for power transport and scattering
cross sections without additional
\begin_inset Formula $l,m$
\end_inset
-dependent factors, see below.
\end_layout
\begin_layout Standard
\lang english

476
lepaper/infinite-old.lyx Normal file
View File

@ -0,0 +1,476 @@
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package none
\inputencoding auto
\fontencoding default
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 0
\use_package cancel 0
\use_package esint 1
\use_package mathdots 0
\use_package mathtools 0
\use_package mhchem 0
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Subsection
Periodic systems and mode analysis
\begin_inset CommandInset label
LatexCommand label
name "sub:Periodic-systems"
\end_inset
\end_layout
\begin_layout Standard
In an infinite periodic array of nanoparticles, the excitations of the nanoparti
cles take the quasiperiodic Bloch-wave form
\begin_inset Formula
\[
\coeffs_{i\nu}=e^{i\vect k\cdot\vect R_{i}}\coeffs_{\nu}
\]
\end_inset
(assuming the incident external field has the same periodicity,
\begin_inset Formula $\coeffr_{\mathrm{ext}(i\nu)}=e^{i\vect k\cdot\vect R_{i}}p_{\mathrm{ext}\left(\nu\right)}$
\end_inset
) where
\begin_inset Formula $\nu$
\end_inset
is the index of a particle inside one unit cell and
\begin_inset Formula $\vect R_{i},\vect R_{i'}\in\Lambda$
\end_inset
are the lattice vectors corresponding to the sites (labeled by multiindices
\begin_inset Formula $i,i'$
\end_inset
) of a Bravais lattice
\begin_inset Formula $\Lambda$
\end_inset
.
The multiple-scattering problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"
\end_inset
) then takes the form
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\coeffs_{i\nu}-T_{\nu}\sum_{(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}\coeffs_{i\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(i\nu)}
\]
\end_inset
or, labeling
\begin_inset Formula $W_{\nu\nu'}=\sum_{i';(i',\nu')\ne\left(i,\nu\right)}S_{i\nu,i'\nu'}e^{i\vect k\cdot\left(\vect R_{i'}-\vect R_{i}\right)}=\sum_{i';(i',\nu')\ne\left(0,\nu\right)}S_{0\nu,i'\nu'}e^{i\vect k\cdot\vect R_{i'}}$
\end_inset
and using the quasiperiodicity,
\begin_inset Formula
\begin{equation}
\sum_{\nu'}\left(\delta_{\nu\nu'}\mathbb{I}-T_{\nu}W_{\nu\nu'}\right)\coeffs_{\nu'}=T_{\nu}\coeffr_{\mathrm{ext}(\nu)},\label{eq:multiple scattering per particle a periodic}
\end{equation}
\end_inset
which reduces the linear problem (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a"
\end_inset
) to interactions between particles inside single unit cell.
A problematic part is the evaluation of the translation operator lattice
sums
\begin_inset Formula $W_{\nu\nu'}$
\end_inset
; this is performed using exponentially convergent Ewald-type representations
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
\end_inset
.
\end_layout
\begin_layout Standard
In an infinite periodic system, a nonlossy mode supports itself without
external driving, i.e.
such mode is described by excitation coefficients
\begin_inset Formula $a_{\nu}$
\end_inset
that satisfy eq.
(
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"
\end_inset
) with zero right-hand side.
That can happen if the block matrix
\begin_inset Formula
\begin{equation}
M\left(\omega,\vect k\right)=\left\{ \delta_{\nu\nu'}\mathbb{I}-T_{\nu}\left(\omega\right)W_{\nu\nu'}\left(\omega,\vect k\right)\right\} _{\nu\nu'}\label{eq:M matrix definition}
\end{equation}
\end_inset
from the left hand side of (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:multiple scattering per particle a periodic"
\end_inset
) is singular (here we explicitly note the
\begin_inset Formula $\omega,\vect k$
\end_inset
depence).
\end_layout
\begin_layout Standard
For lossy nanoparticles, however, perfect propagating modes will not exist
and
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
will never be perfectly singular.
Therefore in practice, we get the bands by scanning over
\begin_inset Formula $\omega,\vect k$
\end_inset
to search for
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
which have an
\begin_inset Quotes erd
\end_inset
almost zero
\begin_inset Quotes erd
\end_inset
singular value.
\end_layout
\begin_layout Section
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
{
\end_layout
\end_inset
Symmetries
\begin_inset ERT
status collapsed
\begin_layout Plain Layout
}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "sm:symmetries"
\end_inset
\end_layout
\begin_layout Standard
A general overview of utilizing group theory to find lattice modes at high-symme
try points of the Brillouin zone can be found e.g.
in
\begin_inset CommandInset citation
LatexCommand cite
after "chapters 1011"
key "dresselhaus_group_2008"
\end_inset
; here we use the same notation.
\end_layout
\begin_layout Standard
We analyse the symmetries of the system in the same VSWF representation
as used in the
\begin_inset Formula $T$
\end_inset
-matrix formalism introduced above.
We are interested in the modes at the
\begin_inset Formula $\Kp$
\end_inset
-point of the hexagonal lattice, which has the
\begin_inset Formula $D_{3h}$
\end_inset
point symmetry.
The six irreducible representations (irreps) of the
\begin_inset Formula $D_{3h}$
\end_inset
group are known and are available in the literature in their explicit forms.
In order to find and classify the modes, we need to find a decomposition
of the lattice mode representation
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
\end_inset
into the irreps of
\begin_inset Formula $D_{3h}$
\end_inset
.
The equivalence representation
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
\end_inset
is the
\begin_inset Formula $E'$
\end_inset
representation as can be deduced from
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (11.19)"
key "dresselhaus_group_2008"
\end_inset
, eq.
(11.19) and the character table for
\begin_inset Formula $D_{3h}$
\end_inset
.
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
\end_inset
operates on a space spanned by the VSWFs around each nanoparticle in the
unit cell (the effects of point group operations on VSWFs are described
in
\begin_inset CommandInset citation
LatexCommand cite
key "schulz_point-group_1999"
\end_inset
).
This space can be then decomposed into invariant subspaces of the
\begin_inset Formula $D_{3h}$
\end_inset
using the projectors
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
\end_inset
defined by
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (4.28)"
key "dresselhaus_group_2008"
\end_inset
.
This way, we obtain a symmetry adapted basis
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
\end_inset
as linear combinations of VSWFs
\begin_inset Formula $\vswfs lm{p,t}$
\end_inset
around the constituting nanoparticles (labeled
\begin_inset Formula $p$
\end_inset
),
\begin_inset Formula
\[
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
\]
\end_inset
where
\begin_inset Formula $\Gamma$
\end_inset
stands for one of the six different irreps of
\begin_inset Formula $D_{3h}$
\end_inset
,
\begin_inset Formula $r$
\end_inset
labels the different realisations of the same irrep, and the last index
\begin_inset Formula $i$
\end_inset
going from 1 to
\begin_inset Formula $d_{\Gamma}$
\end_inset
(the dimensionality of
\begin_inset Formula $\Gamma$
\end_inset
) labels the different partners of the same given irrep.
The number of how many times is each irrep contained in
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
\end_inset
(i.e.
the range of index
\begin_inset Formula $r$
\end_inset
for given
\begin_inset Formula $\Gamma$
\end_inset
) depends on the multipole degree cutoff
\begin_inset Formula $l_{\mathrm{max}}$
\end_inset
.
\end_layout
\begin_layout Standard
Each mode at the
\begin_inset Formula $\Kp$
\end_inset
-point shall lie in the irreducible spaces of only one of the six possible
irreps and it can be shown via
\begin_inset CommandInset citation
LatexCommand cite
after "eq. (2.51)"
key "dresselhaus_group_2008"
\end_inset
that, at the
\begin_inset Formula $\Kp$
\end_inset
-point, the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
defined above takes a block-diagonal form in the symmetry-adapted basis,
\begin_inset Formula
\[
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
\]
\end_inset
This enables us to decompose the matrix according to the irreps and to solve
the singular value problem in each irrep separately, as done in Fig.
\begin_inset CommandInset ref
LatexCommand ref
reference "smfig:dispersions"
\end_inset
(a).
\end_layout
\end_body
\end_document