Merge branch 'article_wrk' into article
Former-commit-id: 91ffb5d42066adae1d3193b9c5125f2d546d3314
This commit is contained in:
commit
7573c2987b
|
@ -491,21 +491,12 @@ These are compatibility macros for the (...)-old files:
|
|||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
Many-particle
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix simulations in finite and infinite systems of electromagnetic scatterers
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
(TODO better title)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
-matrix simulations for nanophotonics: symmetries, scattering and lattice
|
||||
modes
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -521,7 +512,7 @@ Multiple-scattering
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Multiple-scattering
|
||||
Many-particle
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
|
@ -529,6 +520,13 @@ Multiple-scattering
|
|||
modes.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix simulations in finite and infinite systems of electromagnetic scatterers
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -617,8 +615,13 @@ The T-matrix multiple scattering method (TMMSM) can be used to solve the
|
|||
\begin_layout Abstract
|
||||
Here we extend the method to infinite periodic structures using Ewald-type
|
||||
lattice summation, and we exploit the possible symmetries of the structure
|
||||
to further improve its efficiency.
|
||||
to further improve its efficiency, so that systems containing tens of thousands
|
||||
of particles can be studied with relative ease.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -629,6 +632,11 @@ Should I mention also the cross sections formulae in abstract / intro?
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Abstract
|
||||
|
@ -794,6 +802,10 @@ Maybe put the numerical results separately in the end.
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section*
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Section*
|
||||
TODO
|
||||
\end_layout
|
||||
|
@ -821,6 +833,12 @@ Truncation notation.
|
|||
Example results and benchmarks with BEM; figures!
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
\begin_layout Itemize
|
||||
Given up for BEM, SCUFF-EM too unreliable.
|
||||
\end_layout
|
||||
|
||||
\end_deeper
|
||||
\begin_layout Itemize
|
||||
Carefully check the transformation directions in sec.
|
||||
|
||||
|
@ -841,7 +859,18 @@ Check whether everything written is correct also for non-symmorphic space
|
|||
groups.
|
||||
\end_layout
|
||||
|
||||
\begin_deeper
|
||||
\begin_layout Itemize
|
||||
Given up
|
||||
\end_layout
|
||||
|
||||
\end_deeper
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
|
|
@ -105,8 +105,17 @@ name "sec:Applications"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Finally, we present some results obtained with the QPMS suite as well as
|
||||
benchmarks with BEM.
|
||||
Finally, we present some results obtained with the QPMS suite
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
as well as benchmarks with BEM
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Scripts to reproduce these results are available under the
|
||||
\family typewriter
|
||||
examples
|
||||
|
@ -115,20 +124,16 @@ examples
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Response of a rectangular nanoplasmonic array
|
||||
Optical response of a square array; finite size effects
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Our first example deals with a plasmonic array made of golden nanoparticles
|
||||
placed in a rectangular planar configuration.
|
||||
The nanoparticles have shape of right circular cylinder with radius 50
|
||||
nm and height 50 nm.
|
||||
The particles are placed with periodicities
|
||||
\begin_inset Formula $p_{x}=\SI{621}{nm}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $p_{y}=\SI{571}{nm}$
|
||||
Our first example deals with a plasmonic array made of silver nanoparticles
|
||||
placed in a square planar configuration.
|
||||
The nanoparticles have shape of right circular cylinder with 30 nm radius
|
||||
and 30 nm in height.
|
||||
The particles are placed with periodicity
|
||||
\begin_inset Formula $p_{x}=p_{y}=375\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
into an isotropic medium with a constant refraction index
|
||||
|
@ -136,7 +141,30 @@ Our first example deals with a plasmonic array made of golden nanoparticles
|
|||
\end_inset
|
||||
|
||||
.
|
||||
For gold, we use the optical properties listed in
|
||||
For silver, we use Drude-Lorentz model with parameters from
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "rakic_optical_1998"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, and the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a single particle we compute using the null-field method (with
|
||||
cutoff
|
||||
\begin_inset Formula $l_{\mathrm{max}}=6$
|
||||
\end_inset
|
||||
|
||||
for solving the null-field equations).
|
||||
|
||||
\begin_inset Note Note
|
||||
status collapsed
|
||||
|
||||
\begin_layout Plain Layout
|
||||
the optical properties listed in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "johnson_optical_1972"
|
||||
|
@ -145,6 +173,15 @@ literal "false"
|
|||
\end_inset
|
||||
|
||||
interpolated with cubical splines.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
The particles' cylindrical shape is approximated with a triangular mesh
|
||||
with XXX boundary elements.
|
||||
\begin_inset Marginal
|
||||
|
@ -157,41 +194,93 @@ Show the mesh as well?
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
We consider finite arrays with
|
||||
\begin_inset Formula $N_{x}\times N_{y}=\ldots\times\ldots,\ldots\times\ldots,\ldots\times\ldots$
|
||||
\begin_inset Formula $N_{x}\times N_{y}=40\times40,70\times70,100\times100$
|
||||
\end_inset
|
||||
|
||||
particles and also the corresponding infinite array, and simulate their
|
||||
absorption when irradiated by circularly polarised plane waves with energies
|
||||
from xx to yy and incidence direction lying in the
|
||||
absorption when irradiated by
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
circularly
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
plane waves with incidence direction lying in the
|
||||
\begin_inset Formula $xz$
|
||||
\end_inset
|
||||
|
||||
plane.
|
||||
The results are shown in Figure
|
||||
We concentrate on the behaviour around the first diffracted order crossing
|
||||
at the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point, which happens around frequency
|
||||
\begin_inset Formula $2.18\,\mathrm{eV}/\hbar$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:Example rectangular absorption"
|
||||
reference "fig:Example rectangular absorption infinite"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
shows the response for the infinite array for a range of frequencies; here
|
||||
in particular we used the multipole cutoff
|
||||
\begin_inset Formula $l_{\mathrm{max}}=3$
|
||||
\end_inset
|
||||
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
for the interparticle interactions, although there is no visible difference
|
||||
if we use
|
||||
\begin_inset Formula $l_{\mathrm{max}}=2$
|
||||
\end_inset
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Mention lMax.
|
||||
\end_layout
|
||||
instead due to the small size of the particles.
|
||||
In Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:Example rectangular absorption size comparison"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, we compare the response of differently sized array slightly below the
|
||||
diffracted order crossing.
|
||||
We see that far from the diffracted orders, all the cross sections are
|
||||
almost directly proportional to the total number of particles.
|
||||
However, near the resonances, the size effects become apparent: the lattice
|
||||
resonances tend to fade away as the size of the array decreases.
|
||||
Moreover, the proportion between the absorbed and scattered parts changes
|
||||
as while the small arrays tend to more just scatter the incident light
|
||||
into different directions, in larger arrays, it is more
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
likely
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
that the light will scatter many times, each time sacrifying a part of
|
||||
its energy to the ohmic losses.
|
||||
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
|
@ -201,37 +290,49 @@ sideways false
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename figs/inf.pdf
|
||||
width 45text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Graphics
|
||||
filename figs/inf_big_px.pdf
|
||||
width 45text%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Absorption of rectangular arrays of golden nanoparticles with periodicities
|
||||
Response of an infinite square array of silver nanoparticles with periodicities
|
||||
|
||||
\begin_inset Formula $p_{x}=\SI{621}{nm}$
|
||||
\begin_inset Formula $p_{x}=p_{y}=375\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $p_{y}=\SI{571}{nm}$
|
||||
to plane waves incident in the
|
||||
\begin_inset Formula $xz$
|
||||
\end_inset
|
||||
|
||||
with a)
|
||||
\begin_inset Formula $\ldots\times\ldots$
|
||||
-plane.
|
||||
Left:
|
||||
\begin_inset Formula $y$
|
||||
\end_inset
|
||||
|
||||
, b)
|
||||
\begin_inset Formula $\ldots\times\ldots$
|
||||
-polarised waves, right:
|
||||
\begin_inset Formula $x$
|
||||
\end_inset
|
||||
|
||||
, c)
|
||||
\begin_inset Formula $\ldots\times\ldots$
|
||||
\end_inset
|
||||
|
||||
and d) infinitely many particles, irradiated by circularly polarised plane
|
||||
waves.
|
||||
e) Absoption profile of a single nanoparticle.
|
||||
-polarised waves.
|
||||
The images show extinction, scattering and absorption cross section per
|
||||
unit cell.
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:Example rectangular absorption"
|
||||
name "fig:Example rectangular absorption infinite"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -245,19 +346,114 @@ name "fig:Example rectangular absorption"
|
|||
|
||||
\end_inset
|
||||
|
||||
We compared the
|
||||
\begin_inset Formula $\ldots\times\ldots$
|
||||
\end_inset
|
||||
|
||||
case with a purely BEM-based solution obtained using the
|
||||
\family typewriter
|
||||
scuff-scatter
|
||||
\family default
|
||||
utility.
|
||||
TODO WHAT DO WE GET?
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename figs/sqlat_scattering_cuts.pdf
|
||||
width 90col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Comparison of optical responses of differently sized square arrays of silver
|
||||
nanoparticles with the same periodicity
|
||||
\begin_inset Formula $p_{x}=p_{y}=375\,\mathrm{nm}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In all cases, the array is illuminated by plane waves linearly polarised
|
||||
in the
|
||||
\begin_inset Formula $y$
|
||||
\end_inset
|
||||
|
||||
-direction, with constant frequency
|
||||
\begin_inset Formula $2.15\,\mathrm{eV}/\hbar$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The cross sections are normalised by the total number of particles in the
|
||||
array.
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:Example rectangular absorption size comparison"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The finite-size cases in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:Example rectangular absorption size comparison"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
were computed with quadrupole truncation
|
||||
\begin_inset Formula $l\le2$
|
||||
\end_inset
|
||||
|
||||
and using the decomposition into the eight irreducible representations
|
||||
of group
|
||||
\begin_inset Formula $D_{2h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The
|
||||
\begin_inset Formula $100\times100$
|
||||
\end_inset
|
||||
|
||||
array took about 4 h to compute on Dell PowerEdge C4130 with 12 core Xeon
|
||||
E5 2680 v3 2.50GHz, requiring about 20 GB of RAM.
|
||||
For smaller systems, the computation time decreases quickly, as the main
|
||||
bottleneck is the LU factorisation.
|
||||
In any case, there is still room for optimisation in the QPMS suite.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
In the infinite case, we benchmarked against a pseudorandom selection of
|
||||
|
||||
\begin_inset Formula $\left(\vect k,\omega\right)$
|
||||
|
@ -283,17 +479,283 @@ TODO also details about the machines used.
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Modes of a rectangular nanoplasmonic array
|
||||
Lattice mode structure
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Square lattice
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Next, we study the eigenmode problem of the same rectangular arrays.
|
||||
The system is lossy, therefore the eigenfrequencies are complex and we
|
||||
need to have a model of the material optical properties also for complex
|
||||
frequencies.
|
||||
Next, we study the lattice mode problem of the same square arrays.
|
||||
First we consider the mode problem exactly at the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point,
|
||||
\begin_inset Formula $\vect k=0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Before proceeding with more sophisticated methods, it is often helpful
|
||||
to look at the singular values of mode problem matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
from the lattice mode equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, as shown in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:square lattice real interval SVD"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This can be always done, even with tabulated/interpolated material properties
|
||||
and/or
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices.
|
||||
An additional insight, especially in the high-symmetry points of the Brillouin
|
||||
zone, is provided by decomposition of the matrix into irreps – in this
|
||||
case of group
|
||||
\begin_inset Formula $D_{4h}$
|
||||
\end_inset
|
||||
|
||||
, which corresponds to the point group symmetry of the array at the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point.
|
||||
Although on the picture none of the SVDs hits manifestly zero, we see two
|
||||
prominent dips in the
|
||||
\begin_inset Formula $E'$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $A_{2}''$
|
||||
\end_inset
|
||||
|
||||
irrep subspaces, which is a sign of an actual solution nearby in the complex
|
||||
plane.
|
||||
Moreover, there might be some less obvious minima in the very vicinity
|
||||
of the diffracted order crossing which do not appear in the picture due
|
||||
to rough frequency sampling.
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename figs/cyl_r30nm_h30nm_p375nmx375nm_mAg_bg1.52_φ0_θ(-0.0075_0.0075)π_ψ0.5π_χ0π_f2.11–2.23eV_L3.pdf
|
||||
width 80col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Singular values of the mode problem matrix
|
||||
\begin_inset Formula $\truncated{M\left(\omega,\vect k=0\right)}3$
|
||||
\end_inset
|
||||
|
||||
for a real frequency interval.
|
||||
The irreducible representations of
|
||||
\begin_inset Formula $D_{4h}$
|
||||
\end_inset
|
||||
|
||||
are labeled with different colors.
|
||||
The density of the data points on the horizontal axis is
|
||||
\begin_inset Formula $1/\mathrm{meV}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:square lattice real interval SVD"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As we have used only analytical ingredients in
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
, the matrix is itself analytical, hence Beyn's algorithm can be used to
|
||||
search for complex mode frequencies, which is shown in Figure
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "fig:square lattice beyn dispersion"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The number of the frequency point found is largely dependent on the parameters
|
||||
used in Beyn's algorithm, mostly the integration contour in the frequency
|
||||
space.
|
||||
Here we used ellipses discretised by 250 points each, with edges nearly
|
||||
touching the empty lattice diffracted orders (from either above or below
|
||||
in the real part), and with major axis covering 1/5 of the interval between
|
||||
two diffracted orders.
|
||||
At the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point, the algorithm finds the actual complex positions of the suspected
|
||||
|
||||
\begin_inset Formula $E'$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset Formula $A_{2}''$
|
||||
\end_inset
|
||||
|
||||
modes without a problem, as well as their continuations to the other nearby
|
||||
values of
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
However, for further
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
it might
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
lose track
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
, especially as the modes cross the diffracted orders.
|
||||
As a result, the parameters of Beyn's algorithm often require manual tuning
|
||||
based on the observed behaviour.
|
||||
|
||||
\begin_inset Float figure
|
||||
placement document
|
||||
alignment document
|
||||
wide false
|
||||
sideways false
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\align center
|
||||
\begin_inset Graphics
|
||||
filename figs/sqlat_beyn_dispersion.pdf
|
||||
width 80col%
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Solutions of the lattice mode problem
|
||||
\begin_inset Formula $\truncated{M\left(\omega,\vect k\right)}3$
|
||||
\end_inset
|
||||
|
||||
found using Beyn's method nearby the first diffracted order crossing at
|
||||
the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point for
|
||||
\begin_inset Formula $k_{y}=0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
At the
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
point, they are classified according to the irreducible representations
|
||||
of
|
||||
\begin_inset Formula $D_{4h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "fig:square lattice beyn dispersion"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
The system is lossy, therefore the eigenfrequencies are complex and we need
|
||||
to have a model of the material optical properties also for complex frequencies.
|
||||
So in this case we use the Drude-Lorentz model for gold with parameters
|
||||
as in
|
||||
\begin_inset CommandInset citation
|
||||
|
@ -306,6 +768,11 @@ literal "false"
|
|||
.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Effects of multipole cutoff
|
||||
\end_layout
|
||||
|
|
|
@ -379,7 +379,13 @@ noprefix "false"
|
|||
|
||||
describes the
|
||||
\emph on
|
||||
lattice modes.
|
||||
lattice modes
|
||||
\emph default
|
||||
, i.e.
|
||||
electromagnetic excitations that can sustain themselves for prolonged time
|
||||
even without external driving
|
||||
\emph on
|
||||
.
|
||||
|
||||
\emph default
|
||||
Non-trivial solutions to
|
||||
|
@ -1724,7 +1730,32 @@ One pecularity of the two-dimensional case is the two-branchedness of the
|
|||
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
appearing in the long-range part.
|
||||
appearing in the long-range part (in the cases
|
||||
\begin_inset Formula $d=1,3$
|
||||
\end_inset
|
||||
|
||||
the function
|
||||
\begin_inset Formula $\gamma\left(z\right)$
|
||||
\end_inset
|
||||
|
||||
appears with even powers, and
|
||||
\begin_inset Formula $\Gamma\left(-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
is meromorphic for integer
|
||||
\begin_inset Formula $j$
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "8.2.9"
|
||||
key "NIST:DLMF"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
As a consequence, if we now explicitly label the dependence on the wavenumber,
|
||||
|
||||
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$
|
||||
|
@ -2108,6 +2139,18 @@ If we assume that
|
|||
|
||||
is chosen to represent the (rough) maximum tolerated magnitude of the summand
|
||||
with regard to target accuracy.
|
||||
This adjustment means that, in worst-case scenario, with growing wavenumber
|
||||
one has to include an increasing number of terms in the long-range sum
|
||||
in order to achieve a given accuracy, the number of terms being proportional
|
||||
to
|
||||
\begin_inset Formula $\left|\kappa\right|^{d}$
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
is the dimension of the lattice.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
|
|
@ -540,8 +540,18 @@ reference "sec:Applications"
|
|||
|
||||
\end_inset
|
||||
|
||||
shows some practical results that can be obtained using QPMS and benchmarks
|
||||
with BEM.
|
||||
shows some practical results that can be obtained using QPMS.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
and benchmarks with BEM.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
|
Loading…
Reference in New Issue