Translation operators with the new qpms_normalisation_t

Results seem consistent with the old test_vswf_translations.c
(they output is the same up to tiny rounding errors).

Not yet implemented for inverse complex or real spherical harmonics
based VSWFs.


Former-commit-id: 8052336a175cf191d8b90df90958885b97712319
This commit is contained in:
Marek Nečada 2019-07-12 10:13:43 +03:00
parent fda3c620f4
commit 76bc4827ca
6 changed files with 111 additions and 245 deletions

View File

@ -105,10 +105,10 @@ Under translations, the coefficients then transform like
\f]
and by substituting and comparing the expressions for canonical waves above, one gets
\f[
R_{\wfe,lm;\wfe,l'm'} = \alpha_{\wfe lm}^{-1} A \alpha_{\wfe l'm'},\\
R_{\wfe,lm;\wfm,l'm'} = \alpha_{\wfe lm}^{-1} B \alpha_{\wfm l'm'},\\
R_{\wfm,lm;\wfe,l'm'} = \alpha_{\wfm lm}^{-1} B \alpha_{\wfe l'm'},\\
R_{\wfm,lm;\wfm,l'm'} = \alpha_{\wfm lm}^{-1} A \alpha_{\wfm l'm'}.
R_{\wfe,lm;\wfe,l'm'} = \alpha_{\wfe lm}^{-1} A_{lm,l'm'} \alpha_{\wfe l'm'},\\
R_{\wfe,lm;\wfm,l'm'} = \alpha_{\wfe lm}^{-1} B_{lm,l'm'} \alpha_{\wfm l'm'},\\
R_{\wfm,lm;\wfe,l'm'} = \alpha_{\wfm lm}^{-1} B_{lm,l'm'} \alpha_{\wfe l'm'},\\
R_{\wfm,lm;\wfm,l'm'} = \alpha_{\wfm lm}^{-1} A_{lm,l'm'} \alpha_{\wfm l'm'}.
\f]
If the coefficients for magnetic and electric waves are the same,
@ -119,7 +119,18 @@ just the matrices \f$ A, B\f$ will be different inside.
If the coefficients differ (as in SCUFF-EM convention, where there
is a relative \a i -factor between electric and magnetic waves),
the functions such as qpms_trans_calculator_get_AB_arrays() will
compute \f$ R_{\wfe\wfe}, R_{\wfe\wfm} \f$ for A, B arrays.
compute \f$ R_{\wfe\wfe}, R_{\wfe\wfm} \f$ for \f$ A, B \f$ arrays.
The remaining matrices' elements must then be obtained as
\f[
R_{\wfm,lm;\wfe,l'm'} = \alpha_{\wfm lm}^{-1} \alpha_{\wfe lm}
R_{\wfe,lm;\wfm,l'm'} \alpha_{\wfm l'm'}^{-1} \alpha_{\wfe l'm'}
= g_{lm}R_{\wfe,lm;\wfm,l'm'}g_{l'm'}, \\
R_{\wfm,lm;\wfm,l'm'} = \alpha_{\wfm lm}^{-1} \alpha_{\wfe lm}
R_{\wfe,lm;\wfe,l'm'} \alpha_{\wfe l'm'}^{-1} \alpha_{\wfm l'm'}
= g_{lm}R_{\wfe,lm;\wfe,l'm'}g_{l'm'}^{-1},
\f]
where the coefficients \f$ g_{lm} \f$ can be obtained by
qpms_normalisation_factor_N_M().
Literature convention tables

View File

@ -8,6 +8,7 @@
#include <complex.h>
#include "qpms_error.h"
#include <amos.h>
#include <math.h>
#ifndef M_LN2
#define M_LN2 0.69314718055994530942 /* log_e 2 */

View File

@ -81,6 +81,13 @@ static inline complex double qpms_normalisation_factor_N(qpms_normalisation_t no
}
/// Returns the factors of a electric VSWF divided by the factor of a magnetic VWFS of a given convention, compared to the reference one.
static inline complex double qpms_normalisation_factor_N_M(qpms_normalisation_t norm, qpms_l_t l, qpms_m_t m) {
return qpms_normalisation_factor_N_noCS(norm, l, m)
/ qpms_normalisation_factor_M_noCS(norm, l, m);
}
/// Returns the factors of a longitudinal VSWF of a given convention compared to the reference convention.
/**
* This version ignores the Condon-Shortley phase bit (perhaps because the Condon-Shortley

View File

@ -14,6 +14,9 @@
#ifndef M_PI
#define M_PI (3.14159265358979323846)
#endif
#ifndef M_SQRT2
#define M_SQRT2 (1.4142135623730950488)
#endif
// integer index types
typedef int qpms_lm_t;

View File

@ -1,4 +1,4 @@
//c99 -o test_vswf_translations -ggdb -I .. test_vswf_translations.c ../translations.c ../gaunt.c -lgsl -lm -lblas ../vecprint.c ../vswf.c ../legendre.c
// c99 -o test_vswf_translations -ggdb -I .. -I ../../amos test_vswf_translations.c ../translations.c ../gaunt.c -lgsl -lm -lblas ../vecprint.c ../vswf.c ../legendre.c ../error.c ../bessel.c ../../amos/libamos.a -lgfortran
#include "translations.h"
#include "vswf.h"
#include <stdio.h>
@ -12,18 +12,14 @@
char *normstr(qpms_normalisation_t norm) {
//int csphase = qpms_normalisation_t_csphase(norm);
norm = qpms_normalisation_t_normonly(norm);
norm = norm & QPMS_NORMALISATION_NORM_BITS;
switch (norm) {
case QPMS_NORMALISATION_NONE:
case QPMS_NORMALISATION_NORM_NONE:
return "none";
case QPMS_NORMALISATION_SPHARM:
case QPMS_NORMALISATION_NORM_SPHARM:
return "spharm";
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NORM_POWER:
return "power";
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
return "xu";
#endif
default:
return "!!!undef!!!";
}
@ -62,14 +58,13 @@ int main() {
}
for(int use_csbit = 0; use_csbit <= 1; ++use_csbit) {
for(int i = 1;
#ifdef USE_XU_ANTINORMALISATION
i <= 4;
#else
i <= 3;
#endif
++i){
qpms_normalisation_t norm = i | (use_csbit ? QPMS_NORMALISATION_T_CSBIT : 0);
for(int i = 0; i < 3; ++i){
qpms_normalisation_t norm = ((qpms_normalisation_t[])
{ QPMS_NORMALISATION_NORM_SPHARM,
QPMS_NORMALISATION_NORM_POWER,
QPMS_NORMALISATION_NORM_NONE
})[i]
| (use_csbit ? QPMS_NORMALISATION_CSPHASE : 0);
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, norm);
for(int J = 1; J <= 4; ++J)
test_sphwave_translation(c, J, o2minuso1, npoints, points);

View File

@ -13,7 +13,7 @@
#include <stdlib.h> //abort()
#include <gsl/gsl_sf_coupling.h>
#include "qpms_error.h"
#include "normalisation.h"
/*
* Define macros with additional factors that "should not be there" according
@ -53,6 +53,12 @@
#endif
// Translation operators for real sph. harm. based waves are not yet implemented...
static inline void TROPS_ONLY_EIMF_IMPLEMENTED(qpms_normalisation_t norm) {
if (norm & (QPMS_NORMALISATION_SPHARM_REAL | QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE))
QPMS_NOT_IMPLEMENTED("Translation operators for real or inverse complex spherical harmonics based waves are not implemented.");
}
/*
* References:
* [Xu_old] Yu-Lin Xu, Journal of Computational Physics 127, 285298 (1996)
@ -127,60 +133,26 @@ int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *
static inline double qpms_trans_normlogfac(qpms_normalisation_t norm,
int m, int n, int mu, int nu) {
//int csphase = qpms_normalisation_t csphase(norm); // probably not needed here
norm = qpms_normalisation_t_normonly(norm);
switch(norm) {
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_TAYLOR:
return -0.5*(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
break;
case QPMS_NORMALISATION_NONE:
return -(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
break;
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
return 0;
break;
#endif
default:
abort();
}
}
static inline double qpms_trans_normfac(qpms_normalisation_t norm,
int m, int n, int mu, int nu) {
int csphase = qpms_normalisation_t_csphase(norm);
norm = qpms_normalisation_t_normonly(norm);
/* Account for csphase here. Alternatively, this could be done by
* using appropriate csphase in the legendre polynomials when calculating
* the translation operator.
*/
double normfac = (1 == csphase) ? min1pow(m-mu) : 1.;
switch(norm) {
case QPMS_NORMALISATION_KRISTENSSON:
normfac *= sqrt((n*(n+1.))/(nu*(nu+1.)));
normfac *= sqrt((2.*n+1)/(2.*nu+1));
break;
case QPMS_NORMALISATION_TAYLOR:
normfac *= sqrt((2.*n+1)/(2.*nu+1));
break;
case QPMS_NORMALISATION_NONE:
normfac *= (2.*n+1)/(2.*nu+1);
break;
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
break;
#endif
default:
abort();
}
return normfac;
}
complex double qpms_trans_single_A(qpms_normalisation_t norm,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
TROPS_ONLY_EIMF_IMPLEMENTED(norm);
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
double costheta = cos(kdlj.theta);
@ -221,7 +193,9 @@ complex double qpms_trans_single_A(qpms_normalisation_t norm,
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// ipow(n-nu) is the difference from the Taylor formula!
presum *= /*ipow(n-nu) * */
(normfac * exp(normlogfac))
@ -352,6 +326,7 @@ complex double qpms_trans_single_B_Xu(int m, int n, int mu, int nu, sph_t kdlj,
complex double qpms_trans_single_B(qpms_normalisation_t norm,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J) {
TROPS_ONLY_EIMF_IMPLEMENTED(norm);
#ifndef USE_BROKEN_SINGLETC
assert(0); // FIXME probably gives wrong values, do not use.
#endif
@ -408,6 +383,9 @@ complex double qpms_trans_single_B(qpms_normalisation_t norm,
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// ipow(n-nu) is the difference from the "old Taylor" formula
presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac)
@ -546,6 +524,9 @@ static void qpms_trans_calculator_multipliers_A_general(
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-N type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_N_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
normfac *= min1pow(m); //different from old Taylor
@ -610,6 +591,9 @@ void qpms_trans_calculator_multipliers_B_general(
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
double presum = min1pow(1-m) * (2*nu+1)/(2.*(n*(n+1)))
* exp(lgamma(n+m+1) - lgamma(n-m+1) + lgamma(nu-mu+1) - lgamma(nu+mu+1)
@ -680,9 +664,11 @@ void qpms_trans_calculator_multipliers_B_general(
int csphase = qpms_normalisation_t_csphase(norm); //TODO FIXME use this
norm = qpms_normalisation_t_normonly(norm);
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
/// N<-M type coefficients w.r.t. Kristensson's convention. Csphase has been already taken into acct ^^^.
normfac *= qpms_normalisation_factor_M_noCS(norm, nu, mu)
/ qpms_normalisation_factor_N_noCS(norm, n, m);
// TODO use csphase to modify normfac here!!!!
// normfac = xxx ? -normfac : normfac;
normfac *= min1pow(m);//different from old taylor
@ -831,51 +817,18 @@ static void qpms_trans_calculator_multipliers_B_Taylor(
}
int qpms_trans_calculator_multipliers_A(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) {
switch (qpms_normalisation_t_normonly(norm)) {
case QPMS_NORMALISATION_TAYLOR:
#ifdef USE_SEPARATE_TAYLOR
qpms_trans_calculator_multipliers_A_Taylor(dest,m,n,mu,nu,qmax);
return 0;
break;
#endif
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
case QPMS_NORMALISATION_KRISTENSSON:
qpms_trans_calculator_multipliers_A_general(norm, dest, m, n, mu, nu, qmax);
return 0;
break;
default:
abort();
}
assert(0);
}
int qpms_trans_calculator_multipliers_B(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax) {
switch (qpms_normalisation_t_normonly(norm)) {
case QPMS_NORMALISATION_TAYLOR:
#ifdef USE_SEPARATE_TAYLOR
qpms_trans_calculator_multipliers_B_Taylor(dest,m,n,mu,nu,Qmax);
return 0;
break;
#endif
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
case QPMS_NORMALISATION_KRISTENSSON:
qpms_trans_calculator_multipliers_B_general(norm, dest, m, n, mu, nu, Qmax);
return 0;
break;
default:
abort();
}
assert(0);
}
qpms_trans_calculator
*qpms_trans_calculator_init (const int lMax, const qpms_normalisation_t normalisation) {
TROPS_ONLY_EIMF_IMPLEMENTED(normalisation);
assert(lMax > 0);
qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator));
c->lMax = lMax;
@ -951,6 +904,7 @@ static inline complex double qpms_trans_calculator_get_A_precalcbuf(const qpms_t
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
const complex double *bessel_buf, const double *legendre_buf) {
TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
assert(qmax == gaunt_q_max(-m,n,mu,nu));
@ -977,33 +931,20 @@ complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
// TODO warn?
return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
switch(qpms_normalisation_t_normonly(c->normalisation)) {
// TODO use normalised legendre functions for Taylor and Kristensson
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,
costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
}
break;
default:
abort();
}
assert(0);
}
static inline complex double qpms_trans_calculator_get_B_precalcbuf(const qpms_trans_calculator *c,
int m, int n, int mu, int nu, sph_t kdlj,
bool r_ge_d, qpms_bessel_t J,
const complex double *bessel_buf, const double *legendre_buf) {
TROPS_ONLY_EIMF_IMPLEMENTED(c->normalisation);
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
@ -1030,26 +971,12 @@ complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
// TODO warn?
return NAN+I*NAN;
int csphase = qpms_normalisation_t_csphase(c->normalisation);
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,csphase,legendre_buf)) abort();
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
}
break;
default:
abort();
}
assert(0);
}
int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c,
@ -1064,14 +991,6 @@ int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c,
// TODO warn? different return value?
return 0;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
costheta,-1,legendre_buf)) abort();
@ -1081,12 +1000,6 @@ int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c,
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
return 0;
}
break;
default:
abort();
}
assert(0);
}
@ -1105,10 +1018,6 @@ int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c,
// TODO warn? different return value?
return 0;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
@ -1134,11 +1043,6 @@ int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c,
}
return 0;
}
break;
default:
abort();
}
assert(0);
}
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
@ -1287,10 +1191,6 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
if(doerr) serr_total[y] += sigma0_err;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
@ -1335,10 +1235,6 @@ int qpms_trans_calculator_get_AB_arrays_e31z_both_points_and_shift(const qpms_tr
srci = 0;
}
}
break;
default:
abort();
}
free(sigmas_short);
free(sigmas_long);
@ -1563,10 +1459,6 @@ int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
if(doerr) serr_total[y] += sigma0_err;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
ptrdiff_t desti = 0, srci = 0;
for (qpms_l_t n = 1; n <= c->lMax; ++n) for (qpms_m_t m = -n; m <= n; ++m) {
@ -1611,10 +1503,6 @@ int qpms_trans_calculator_get_AB_arrays_e32(const qpms_trans_calculator *c,
srci = 0;
}
}
break;
default:
abort();
}
free(sigmas_short);
free(sigmas_long);
@ -1670,10 +1558,6 @@ int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculat
// TODO warn? different return value?
return 0;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
@ -1698,11 +1582,6 @@ int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculat
}
return 0;
}
break;
default:
abort();
}
assert(0);
}
int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c,
@ -1718,10 +1597,6 @@ int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c
// TODO warn? different return value?
return 0;
}
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_NONE:
{
double costheta = cos(kdlj.theta);
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
@ -1735,11 +1610,6 @@ int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c
kdlj,false,J,bessel_buf,legendre_buf);
return 0;
}
break;
default:
abort();
}
assert(0);
}
// Short-range parts of the translation coefficients
@ -1826,13 +1696,6 @@ int qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(const qpms_trans_calculato
assert (J == QPMS_HANKEL_PLUS);
assert(k_sph.theta == M_PI_2);
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_KRISTENSSON:
case QPMS_NORMALISATION_NONE:
#ifdef USE_XU_ANTINORMALISATION
case QPMS_NORMALISATION_XU:
#endif
{
//double costheta = cos(kdlj.theta);
//if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
@ -1846,11 +1709,6 @@ int qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(const qpms_trans_calculato
k_sph,J,lrhankel_recparts_buf);
return 0;
}
break;
default:
abort();
}
assert(0);
}
// Fourier transforms of the long-range parts of the translation coefficients
@ -1884,10 +1742,6 @@ int qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(const qpms_trans_calc
return 0;
}
#endif
switch(qpms_normalisation_t_normonly(c->normalisation)) {
case QPMS_NORMALISATION_TAYLOR:
case QPMS_NORMALISATION_POWER:
case QPMS_NORMALISATION_NONE:
{
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1,
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
@ -1910,11 +1764,6 @@ int qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(const qpms_trans_calc
}
return 0;
}
break;
default:
abort();
}
assert(0);
}
// FIXME i get stack smashing error inside the following function if compiled with optimizations