Single particle scattering progress.
Former-commit-id: f0a3cf7f42f95b36a9f4db4118c06dc1b3d737c6
This commit is contained in:
parent
9aefacfa00
commit
80ea82a33f
|
@ -279,6 +279,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoefftlm}[3]{\rcoeffp{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\rcoeffincptlm}[4]{\rcoeffincp{#1,#2#3#4}}
|
||||
\end_inset
|
||||
|
@ -299,6 +304,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\outcoefftlm}[3]{\outcoeffp{#1#2#3}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\vswfouttlm}[3]{\vect u_{#1#2#3}}
|
||||
\end_inset
|
||||
|
@ -344,6 +354,11 @@
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\dlmfFer}[2]{\mathsf{P}_{#1}^{#2}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -405,10 +405,19 @@ literal "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -427,14 +436,284 @@ TODO small note about cartesian multipoles, anapoles etc.
|
|||
T-matrix definition
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Absorbed power
|
||||
\begin_layout Standard
|
||||
The regular VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
constitute a basis for solutions of the Helmholtz equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:Helmholtz eq"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
inside a ball
|
||||
\begin_inset Formula $\openball 0R$
|
||||
\end_inset
|
||||
|
||||
with radius
|
||||
\begin_inset Formula $R$
|
||||
\end_inset
|
||||
|
||||
and center in the origin; however, if the equation is not guaranteed to
|
||||
hold inside a smaller ball
|
||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
around the origin (typically due to presence of a scatterer), one has to
|
||||
add the outgoing VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Vnitřní koule uzavřená? Jak se řekne mezikulí anglicky?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The single-particle scattering problem at frequency
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
can be posed as follows: Let a scatterer be enclosed inside the ball
|
||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
and let the whole volume
|
||||
\begin_inset Formula $\openball 0R\backslash B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
be filled with a homogeneous isotropic medium with wave number
|
||||
\begin_inset Formula $k\left(\omega\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Inside this volume, the electric field can be expanded as
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
doplnit frekvence a polohy
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
If there was no scatterer and
|
||||
\begin_inset Formula $B_{0}\left(R_{<}\right)$
|
||||
\end_inset
|
||||
|
||||
was filled with the same homogeneous medium, the part with the outgoing
|
||||
VSWFs would vanish and only the part
|
||||
\begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
due to sources outside
|
||||
\begin_inset Formula $\openball 0R$
|
||||
\end_inset
|
||||
|
||||
would remain.
|
||||
Let us assume that the
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
driving field
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
is given, so that presence of the scatterer does not affect
|
||||
\begin_inset Formula $\vect E_{\mathrm{inc}}$
|
||||
\end_inset
|
||||
|
||||
and is fully manifested in the latter part,
|
||||
\begin_inset Formula $\vect E_{\mathrm{scat}}=\sum_{\tau lm}\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
We also assume that the scatterer is made of optically linear materials,
|
||||
and hence reacts on the incident field in a linear manner.
|
||||
This gives a linearity constraint between the expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\outcoefftlm{\tau}lm=\sum_{\tau'l'm'}T_{\tau lm}^{\tau'l'm'}\rcoefftlm{\tau'}{l'}{m'}\label{eq:T-matrix definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
where the
|
||||
\begin_inset Formula $T_{\tau lm}^{\tau'l'm'}=T_{\tau lm}^{\tau'l'm'}\left(\omega\right)$
|
||||
\end_inset
|
||||
|
||||
are the elements of the
|
||||
\emph on
|
||||
transition matrix,
|
||||
\emph default
|
||||
a.k.a.
|
||||
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix.
|
||||
It completely describes the scattering properties of a linear scatterer,
|
||||
so with the knowledge of the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix, we can solve the single-patricle scatering prroblem simply by substitut
|
||||
ing appropriate expansion coefficients
|
||||
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
||||
\end_inset
|
||||
|
||||
of the driving field into
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices of particles with certain simple geometries (most famously spherical)
|
||||
can be obtained analytically [Kristensson 2016, Mie], but in general one
|
||||
can find them numerically by simulating scattering of a regular spherical
|
||||
wave
|
||||
\begin_inset Formula $\vswfouttlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
and projecting the scattered fields (or induced currents, depending on
|
||||
the method) onto the outgoing VSWFs
|
||||
\begin_inset Formula $\vswfrtlm{\tau}{'l'}{m'}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In practice, one can compute only a finite number of elements with a cut-off
|
||||
value
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
on the multipole degree,
|
||||
\begin_inset Formula $l,l'\le L$
|
||||
\end_inset
|
||||
|
||||
, see below.
|
||||
We typically use the scuff-tmatrix tool from the free software SCUFF-EM
|
||||
suite [SCUFF-EM].
|
||||
Note that older versions of SCUFF-EM contained a bug that rendered almost
|
||||
all
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix results wrong; we found and fixed the bug and from upstream version
|
||||
xxx onwards, it should behave correctly.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
T-matrix compactness, cutoff validity
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The magnitude of the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix elements depends heavily on the scatterer's size compared to the
|
||||
wavelength.
|
||||
Fortunately, the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a bounded scatterer is a compact operator [REF???], so from certain
|
||||
multipole degree onwards,
|
||||
\begin_inset Formula $l,l'>L$
|
||||
\end_inset
|
||||
|
||||
, the elements of the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix are negligible, so truncating the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix at finite multipole degree
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
gives a good approximation of the actual infinite-dimensional itself.
|
||||
If the incident field is well-behaved, i.e.
|
||||
the expansion coefficients
|
||||
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
||||
\end_inset
|
||||
|
||||
do not take excessive values for
|
||||
\begin_inset Formula $l'>L$
|
||||
\end_inset
|
||||
|
||||
, the scattered field expansion coefficients
|
||||
\begin_inset Formula $\outcoefftlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
with
|
||||
\begin_inset Formula $l>L$
|
||||
\end_inset
|
||||
|
||||
will also be negligible.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
A rule of thumb to choose the
|
||||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
with desired
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix element accuracy
|
||||
\begin_inset Formula $\delta$
|
||||
\end_inset
|
||||
|
||||
can be obtained from the spherical Bessel function expansion around zero,
|
||||
TODO.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
Absorbed power
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Multiple scattering
|
||||
\end_layout
|
||||
|
|
Loading…
Reference in New Issue