[Ewald] ...
Former-commit-id: e9f98d06ca7ccfad3d9181d083919d1a146f8860
This commit is contained in:
parent
9f9da628cc
commit
814ea36415
126
notes/ewald.lyx
126
notes/ewald.lyx
|
@ -1489,6 +1489,8 @@ Let's polish it a bit more
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\size footnotesize
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
|
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
|
||||||
|
@ -1497,6 +1499,8 @@ k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\size default
|
||||||
with principal branches of the hypergeometric functions, associated Legendre
|
with principal branches of the hypergeometric functions, associated Legendre
|
||||||
functions, and fractional powers.
|
functions, and fractional powers.
|
||||||
The conditions from
|
The conditions from
|
||||||
|
@ -1525,6 +1529,10 @@ reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
\begin_inset Note Note
|
||||||
|
status collapsed
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
Let's do it.
|
Let's do it.
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{eqnarray*}
|
\begin{eqnarray*}
|
||||||
|
@ -1534,6 +1542,11 @@ Let's do it.
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
One problematic element here is the gamma function
|
One problematic element here is the gamma function
|
||||||
\begin_inset Formula $\text{Γ}\left(2-q+n\right)$
|
\begin_inset Formula $\text{Γ}\left(2-q+n\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -1561,6 +1574,76 @@ polynomial
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
In other cases, different expressions can be obtained from
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
using various transformation formulae from either DLMF or
|
||||||
|
\begin_inset ERT
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
|
||||||
|
|
||||||
|
\backslash
|
||||||
|
begin{russian}
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Прудников
|
||||||
|
\begin_inset ERT
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
|
||||||
|
|
||||||
|
\backslash
|
||||||
|
end{russian}
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
In fact, Mathematica is usually able to calculate the transforms for specific
|
||||||
|
values of
|
||||||
|
\begin_inset Formula $\kappa,q,n$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, but it did not find any general formula for me.
|
||||||
|
The resulting expressions are finite sums of algebraic functions, Table
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "tab:Asymptotical-behaviour-Mathematica"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
shows how fast they decay with growing
|
||||||
|
\begin_inset Formula $k$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
for some parameters.
|
||||||
|
The only case where Mathematica did not help at all is
|
||||||
|
\begin_inset Formula $q=2,n=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which is unfortunately important.
|
||||||
|
But if I have not made some mistake, the expression
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is applicable for this case.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -2712,6 +2795,41 @@ reference "eq:prudnikov2 eq 2.12.9.14"
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
Major TODOs and open questions
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Check if
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
gives a satisfactory result for the case
|
||||||
|
\begin_inset Formula $q=2,n=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Analyse the behaviour
|
||||||
|
\begin_inset Formula $k\to k_{0}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Find a general algorithm for generating the expressions of the Hankel transforms.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Itemize
|
||||||
|
Three-dimensional case.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
(Appendix) Fourier vs.
|
(Appendix) Fourier vs.
|
||||||
Hankel transform
|
Hankel transform
|
||||||
|
@ -2761,7 +2879,7 @@ where the spherical Hankel transform
|
||||||
2)
|
2)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2771,7 +2889,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
||||||
3)
|
3)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2784,7 +2902,7 @@ so it is not unitary.
|
||||||
An unitary convention would look like this:
|
An unitary convention would look like this:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -2838,7 +2956,7 @@ where the Hankel transform of order
|
||||||
is defined as
|
is defined as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue