[Ewald] ...

Former-commit-id: e9f98d06ca7ccfad3d9181d083919d1a146f8860
This commit is contained in:
Marek Nečada 2017-09-11 08:07:23 +00:00
parent 9f9da628cc
commit 814ea36415
1 changed files with 122 additions and 4 deletions

View File

@ -1489,6 +1489,8 @@ Let's polish it a bit more
\end_inset \end_inset
\size footnotesize
\begin_inset Formula \begin_inset Formula
\begin{multline} \begin{multline}
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\ \pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}Γ\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
@ -1497,6 +1499,8 @@ k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:
\end_inset \end_inset
\size default
with principal branches of the hypergeometric functions, associated Legendre with principal branches of the hypergeometric functions, associated Legendre
functions, and fractional powers. functions, and fractional powers.
The conditions from The conditions from
@ -1525,6 +1529,10 @@ reference "eq:2D Hankel transform of regularized outgoing wave, decomposition"
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
Let's do it. Let's do it.
\begin_inset Formula \begin_inset Formula
\begin{eqnarray*} \begin{eqnarray*}
@ -1534,6 +1542,11 @@ Let's do it.
\end_inset \end_inset
\end_layout
\end_inset
One problematic element here is the gamma function One problematic element here is the gamma function
\begin_inset Formula $\text{Γ}\left(2-q+n\right)$ \begin_inset Formula $\text{Γ}\left(2-q+n\right)$
\end_inset \end_inset
@ -1561,6 +1574,76 @@ polynomial
\end_inset \end_inset
. .
In other cases, different expressions can be obtained from
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1"
\end_inset
using various transformation formulae from either DLMF or
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{russian}
\end_layout
\end_inset
Прудников
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
end{russian}
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
In fact, Mathematica is usually able to calculate the transforms for specific
values of
\begin_inset Formula $\kappa,q,n$
\end_inset
, but it did not find any general formula for me.
The resulting expressions are finite sums of algebraic functions, Table
\begin_inset CommandInset ref
LatexCommand ref
reference "tab:Asymptotical-behaviour-Mathematica"
\end_inset
shows how fast they decay with growing
\begin_inset Formula $k$
\end_inset
for some parameters.
The only case where Mathematica did not help at all is
\begin_inset Formula $q=2,n=0$
\end_inset
, which is unfortunately important.
But if I have not made some mistake, the expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
\end_inset
is applicable for this case.
\end_layout \end_layout
\begin_layout Standard \begin_layout Standard
@ -2712,6 +2795,41 @@ reference "eq:prudnikov2 eq 2.12.9.14"
\end_layout \end_layout
\begin_layout Section
Major TODOs and open questions
\end_layout
\begin_layout Itemize
Check if
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:2D Hankel transform of exponentially suppressed outgoing wave expanded"
\end_inset
gives a satisfactory result for the case
\begin_inset Formula $q=2,n=0$
\end_inset
.
\end_layout
\begin_layout Itemize
Analyse the behaviour
\begin_inset Formula $k\to k_{0}$
\end_inset
.
\end_layout
\begin_layout Itemize
Find a general algorithm for generating the expressions of the Hankel transforms.
\end_layout
\begin_layout Itemize
Three-dimensional case.
\end_layout
\begin_layout Section \begin_layout Section
(Appendix) Fourier vs. (Appendix) Fourier vs.
Hankel transform Hankel transform
@ -2761,7 +2879,7 @@ where the spherical Hankel transform
2) 2)
\begin_inset Formula \begin_inset Formula
\[ \[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right). \bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\] \]
\end_inset \end_inset
@ -2771,7 +2889,7 @@ Using this convention, the inverse spherical Hankel transform is given by
3) 3)
\begin_inset Formula \begin_inset Formula
\[ \[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k), g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
\] \]
\end_inset \end_inset
@ -2784,7 +2902,7 @@ so it is not unitary.
An unitary convention would look like this: An unitary convention would look like this:
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\end{equation} \end{equation}
\end_inset \end_inset
@ -2838,7 +2956,7 @@ where the Hankel transform of order
is defined as is defined as
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition} \pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
\end{equation} \end{equation}
\end_inset \end_inset