[ewald] pokračování
Former-commit-id: c9a2cc5c707dbb90521c93bfa3e894ca956cb5ca
This commit is contained in:
parent
46138df4fe
commit
83fed81e24
190
notes/ewald.lyx
190
notes/ewald.lyx
|
@ -172,6 +172,11 @@
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\nats}{\mathbb{N}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\begin_inset FormulaMacro
|
\begin_inset FormulaMacro
|
||||||
\newcommand{\reals}{\mathbb{R}}
|
\newcommand{\reals}{\mathbb{R}}
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -643,7 +648,7 @@ The translation operator
|
||||||
for compact scatterers in 3d can be expressed as
|
for compact scatterers in 3d can be expressed as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(\left|\vect r\right|\right)
|
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(k_{0}\left|\vect r\right|\right)
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -673,14 +678,14 @@ where
|
||||||
The spherical Hankel functions can be expressed analytically as (REF DLMF
|
The spherical Hankel functions can be expressed analytically as (REF DLMF
|
||||||
10.49.6, 10.49.1)
|
10.49.6, 10.49.1)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{equation}
|
||||||
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},
|
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},\label{eq:spherical Hankel function series}
|
||||||
\]
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
so if we find a way to deal with the radial functions
|
so if we find a way to deal with the radial functions
|
||||||
\begin_inset Formula $s_{q}(r)=e^{ir}r^{-q}$
|
\begin_inset Formula $s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
,
|
,
|
||||||
|
@ -699,18 +704,176 @@ h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\righ
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
Assume that all scatterers are placed in the plane
|
||||||
|
\begin_inset Formula $\vect z=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, so that the 2d Fourier transform of the long-range part of the translation
|
||||||
|
operator in terms of Hankel transforms, according to
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Fourier v. Hankel tf 2d"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, reads
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
|
\begin{multline*}
|
||||||
|
\uaft{S_{l',m',t'\leftarrow l,m,t}^{\textup{L}}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
|
||||||
|
\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{h_{p}^{(1)\textup{L}}\left(k_{0}\vect{\bullet}\right)}\left(\left|\vect k\right|\right)
|
||||||
|
\end{multline*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Here
|
||||||
|
\begin_inset Formula $h_{p}^{(1)\textup{L}}=h_{p}^{(1)}-h_{p}^{(1)\textup{S}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is a long range part of a given spherical Hankel function which has to
|
||||||
|
be found and which contains all the terms with far-field (
|
||||||
|
\begin_inset Formula $r\to\infty$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) asymptotics proportional to
|
||||||
|
\begin_inset Formula $\sim e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $q\le Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is at least two in order to achieve absolute convergence of the direct-space
|
||||||
|
sum, but might be higher in order to speed the convergence up.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
Obviously, all the terms
|
||||||
|
\begin_inset Formula $\propto s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $q>Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
of the spherical Hankel function
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:spherical Hankel function series"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be kept untouched as part of
|
||||||
|
\begin_inset Formula $h_{p}^{(1)\textup{S}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, as they decay fast enough.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The remaining task is therefore to find a suitable decomposition of
|
||||||
|
\begin_inset Formula $s_{q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $q\le Q$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
into short-range and long-range parts,
|
||||||
|
\begin_inset Formula $s_{q}(r)=s_{q}^{\textup{S}}(r)+s_{q}^{\textup{L}}(r)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, such that
|
||||||
|
\begin_inset Formula $s_{q}^{\textup{L}}(r)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
contains all the slowly decaying asymptotics and its Hankel transforms
|
||||||
|
decay desirably fast as well,
|
||||||
|
\begin_inset Formula $\pht n{s_{q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $z\to\infty$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The latter requirement calls for suitable regularisation functions—
|
||||||
|
\begin_inset Formula $s_{q}^{\textup{L}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
must be sufficiently smooth in the origin, so that
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\pht n{s_{q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
exists and decays fast enough.
|
||||||
|
|
||||||
|
\begin_inset Formula $J_{\nu}(r)\sim\left(r/2\right)^{\nu}/\Gamma\left(\nu+1\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(REF DLMF 10.7.3) near the origin, so the regularisation function should
|
||||||
|
be
|
||||||
|
\begin_inset Formula $\rho(r)=o(r^{q-n-1})$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
only to make
|
||||||
|
\begin_inset Formula $\pht n{s_{q}^{\textup{L}}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
converge.
|
||||||
|
The additional decay speed requirement calls for at least
|
||||||
|
\begin_inset Formula $\rho(r)=o(r^{q-n+Q-1})$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, I guess.
|
||||||
|
At the same time,
|
||||||
|
\begin_inset Formula $\rho(r)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
must converge fast enough to one for
|
||||||
|
\begin_inset Formula $r\to\infty$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The electrostatic Ewald summation uses regularisation with
|
||||||
|
\begin_inset Formula $1-e^{-cr^{2}}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
However, such choice does not seem to lead to an analytical solution for
|
||||||
|
the current problem
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:2d long range regularisation problem statement"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
But it turns out that the family of functions
|
||||||
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
|
\rho_{\kappa,c}(r)\equiv\left(1-e^{-cr}\right)^{\text{\kappa}},\quad c>0,\kappa\in\nats
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
leads to satisfactory results, as will be shown below.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection
|
||||||
|
Hankel transforms of the long-range parts
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
|
@ -719,9 +882,10 @@ h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\righ
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\begin{multline*}
|
||||||
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
|
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
|
||||||
\]
|
\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
|
||||||
|
\end{multline*}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -777,7 +941,7 @@ where the spherical Hankel transform
|
||||||
2)
|
2)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -787,7 +951,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
||||||
3)
|
3)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -800,7 +964,7 @@ so it is not unitary.
|
||||||
An unitary convention would look like this:
|
An unitary convention would look like this:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -854,7 +1018,7 @@ where the Hankel transform of order
|
||||||
is defined as
|
is defined as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue