Notes: how does the l-cutoff affect absorption?
Former-commit-id: 059c1f8a7aa29f19e2febe54d360ab045782603b
This commit is contained in:
parent
9e30722756
commit
8ca7671092
|
@ -638,6 +638,59 @@ extremal
|
|||
while everything outside it represents (unrealistic) system with gain.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Open questions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
How much does the sph.
|
||||
harm.
|
||||
degree cutoff affect the eigenvalues of
|
||||
\begin_inset Formula $W$
|
||||
\end_inset
|
||||
|
||||
?
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
When I simulated a cylindrical nanoparticle in scuff-tmatrix (
|
||||
\begin_inset Formula $l_{\mathrm{max}}=2$
|
||||
\end_inset
|
||||
|
||||
, 50 nm height, 50 nm radius, Palik Ag permittivity) and then with the same
|
||||
parameters, just with the imaginary part of permittivity set to zero (i.e.
|
||||
without losses), I got almost the same results, including very similar
|
||||
eigenvalues of
|
||||
\begin_inset Formula $W$
|
||||
\end_inset
|
||||
|
||||
(although it should then be basically zero).
|
||||
This is probably a problem of the BEM method, but it could also be consequence
|
||||
of the cutoff.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For comparison, when I tried exact Mie results for a sphere with
|
||||
\begin_inset Formula $\Im\epsilon=0$
|
||||
\end_inset
|
||||
|
||||
, I got also
|
||||
\begin_inset Formula $W=0$
|
||||
\end_inset
|
||||
|
||||
(as expected).
|
||||
But
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a sphere is diagonal, hence the cutoff does not affect the eigenvalue
|
||||
s of resulting (also diagonal)
|
||||
\begin_inset Formula $W$
|
||||
\end_inset
|
||||
|
||||
-matrix (below the cutoff, of course).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
Multiple scattering
|
||||
\end_layout
|
||||
|
|
Loading…
Reference in New Issue