Fix typos, add bibliography.
Former-commit-id: 625bcf54b52f5866c9c120b7f4fb35f50b6c9ac4
This commit is contained in:
parent
3a0c5b21c8
commit
91e2ae9e4d
|
@ -10,6 +10,14 @@
|
|||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/HES6WJTP/(Wiley science paperback series) Craig F. Bohren, Donald R. Huffman-Absorption and scattering of light by small particles-Wiley-VCH (1998).djvu}
|
||||
}
|
||||
|
||||
@misc{SCUFF2,
|
||||
title = {{{SCUFF}}-{{EM}}},
|
||||
url = {http://homerreid.dyndns.org/scuff-EM/},
|
||||
author = {Reid, Homer},
|
||||
year = {2018},
|
||||
note = {http://github.com/homerreid/scuff-EM}
|
||||
}
|
||||
|
||||
@article{xu_calculation_1996,
|
||||
title = {Calculation of the {{Addition Coefficients}} in {{Electromagnetic Multisphere}}-{{Scattering Theory}}},
|
||||
volume = {127},
|
||||
|
@ -284,6 +292,46 @@
|
|||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/YMRZHBY4/Linton ja Thompson - 2009 - One- and two-dimensional lattice sums for the thre.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/Z8CFQ6S9/S0021999108005962.html}
|
||||
}
|
||||
|
||||
@book{olver_nist_2010,
|
||||
edition = {1 Pap/Cdr},
|
||||
title = {{{NIST}} Handbook of Mathematical Functions},
|
||||
isbn = {978-0-521-14063-8},
|
||||
urldate = {2018-08-20},
|
||||
publisher = {{Cambridge University Press}},
|
||||
url = {http://gen.lib.rus.ec/book/index.php?md5=7750A842DAAE07EBE30D597EB1352408},
|
||||
author = {Olver, Frank W. J. and Lozier, Daniel W. and Boisvert, Ronald F. and Clark, Charles W.},
|
||||
year = {2010},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZJ5LBQ8W/Olver ym. - 2010 - NIST handbook of mathematical functions.pdf}
|
||||
}
|
||||
|
||||
@article{NIST:DLMF,
|
||||
title = {{{NIST Digital Library}} of {{Mathematical Functions}}},
|
||||
url = {http://dlmf.nist.gov/},
|
||||
key = {DLMF},
|
||||
note = {F.~W.~J. Olver, A.~B. Olde Daalhuis, D.~W. Lozier, B.~I. Schneider, R.~F. Boisvert, C.~W. Clark, B.~R. Miller and B.~V. Saunders, eds.}
|
||||
}
|
||||
|
||||
@article{reid_efficient_2015,
|
||||
archivePrefix = {arXiv},
|
||||
eprinttype = {arxiv},
|
||||
eprint = {1307.2966},
|
||||
title = {Efficient {{Computation}} of {{Power}}, {{Force}}, and {{Torque}} in {{BEM Scattering Calculations}}},
|
||||
volume = {63},
|
||||
issn = {0018-926X, 1558-2221},
|
||||
abstract = {We present concise, computationally efficient formulas for several quantities of interest -- including absorbed and scattered power, optical force (radiation pressure), and torque -- in scattering calculations performed using the boundary-element method (BEM) [also known as the method of moments (MOM)]. Our formulas compute the quantities of interest \textbackslash{}textit\{directly\} from the BEM surface currents with no need ever to compute the scattered electromagnetic fields. We derive our new formulas and demonstrate their effectiveness by computing power, force, and torque in a number of example geometries. Free, open-source software implementations of our formulas are available for download online.},
|
||||
number = {8},
|
||||
urldate = {2018-09-23},
|
||||
journal = {IEEE Transactions on Antennas and Propagation},
|
||||
doi = {10.1109/TAP.2015.2438393},
|
||||
url = {http://arxiv.org/abs/1307.2966},
|
||||
author = {Reid, M. T. Homer and Johnson, Steven G.},
|
||||
month = aug,
|
||||
year = {2015},
|
||||
keywords = {Physics - Classical Physics,Physics - Computational Physics},
|
||||
pages = {3588-3598},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/I2DXTKUF/Reid ja Johnson - 2015 - Efficient Computation of Power, Force, and Torque .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/LG7AVZDH/1307.html}
|
||||
}
|
||||
|
||||
@article{guo_lasing_2019,
|
||||
title = {Lasing at \${{K}}\$ {{Points}} of a {{Honeycomb Plasmonic Lattice}}},
|
||||
volume = {122},
|
||||
|
@ -332,6 +380,24 @@
|
|||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/ZRYZ4KLK/Kristensson - 2016 - Scattering of Electromagnetic Waves by Obstacles.pdf}
|
||||
}
|
||||
|
||||
@article{ganesh_convergence_2012,
|
||||
title = {Convergence Analysis with Parameter Estimates for a Reduced Basis Acoustic Scattering {{T}}-Matrix Method},
|
||||
volume = {32},
|
||||
issn = {0272-4979},
|
||||
abstract = {Abstract. The celebrated truncated T-matrix method for wave propagation models belongs to a class of the reduced basis methods (RBMs), with the parameters bein},
|
||||
language = {en},
|
||||
number = {4},
|
||||
urldate = {2019-07-03},
|
||||
journal = {IMA J Numer Anal},
|
||||
doi = {10.1093/imanum/drr041},
|
||||
url = {https://academic.oup.com/imajna/article/32/4/1348/654510},
|
||||
author = {Ganesh, M. and Hawkins, S. C. and Hiptmair, R.},
|
||||
month = oct,
|
||||
year = {2012},
|
||||
pages = {1348-1374},
|
||||
file = {/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/2CRM9IEU/ganesh2012.pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/KLKJBTZU/Ganesh ym. - 2012 - Convergence analysis with parameter estimates for .pdf;/u/46/necadam1/unix/.mozilla/firefox/6m8fw48s.default/zotero/storage/N5H8B7SF/654510.html}
|
||||
}
|
||||
|
||||
@book{chew_fast_2000,
|
||||
series = {Artech {{House Antennas}} and {{Propagation Library}}},
|
||||
title = {Fast and {{Efficient Algorithms}} in {{Computational Electromagnetics}}},
|
||||
|
|
|
@ -443,7 +443,7 @@ The regular VSWFs
|
|||
|
||||
constitute a basis for solutions of the Helmholtz equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Helmholtz eq"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -589,7 +589,7 @@ ing appropriate expansion coefficients
|
|||
|
||||
of the driving field into
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -602,7 +602,7 @@ noprefix "false"
|
|||
\begin_inset Formula $\outcoefftlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
are related to the induced electric (
|
||||
are the effective induced electric (
|
||||
\begin_inset Formula $\tau=1$
|
||||
\end_inset
|
||||
|
||||
|
@ -756,7 +756,7 @@ For convenience, let us introduce a short-hand matrix notation for the expansion
|
|||
indices explicitly; so for example, eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:T-matrix definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -798,7 +798,7 @@ literal "true"
|
|||
|
||||
have expansion as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:E field expansion"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1722,7 +1722,7 @@ reference "eq:absorption CS single"
|
|||
|
||||
-th particle reads according to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1745,7 +1745,7 @@ whereas the contributions of fields scattered from each particle expanded
|
|||
|
||||
is, according to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:singular vswf translation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1763,7 +1763,7 @@ noprefix "false"
|
|||
|
||||
Using the unitarity
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular translation unitarity"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1773,7 +1773,7 @@ noprefix "false"
|
|||
|
||||
and composition
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular translation composition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1805,7 +1805,7 @@ where only the last expression is suitable for numerical evaluation with
|
|||
|
||||
Substituting
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:atf form multiparticle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1815,7 +1815,7 @@ noprefix "false"
|
|||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:f squared form multiparticle"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1825,7 +1825,7 @@ noprefix "false"
|
|||
|
||||
into
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:scattering CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1835,7 +1835,7 @@ noprefix "false"
|
|||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1873,7 +1873,7 @@ An alternative approach to derive the absorption cross section is via a
|
|||
power transport argument.
|
||||
Note the direct proportionality between absorption cross section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS single"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1883,7 +1883,7 @@ noprefix "false"
|
|||
|
||||
and net radiated power for single scatterer
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Power transport"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1905,7 +1905,7 @@ noprefix "false"
|
|||
.
|
||||
Using the power transport formula
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Power transport"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1923,7 +1923,7 @@ noprefix "false"
|
|||
|
||||
which seems different from
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS multi"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1933,7 +1933,7 @@ noprefix "false"
|
|||
|
||||
, but using
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:particle total incident field coefficient a"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1974,7 +1974,7 @@ TODO better formulation
|
|||
|
||||
proving that the expressions in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS multi"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -1984,7 +1984,7 @@ noprefix "false"
|
|||
|
||||
and
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:absorption CS multi alternative"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
|
|
@ -215,7 +215,7 @@ noprefix "false"
|
|||
.
|
||||
In such system, the multiple-scattering problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -253,7 +253,7 @@ Due to periodicity, we can also write
|
|||
|
||||
, the solutions of
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem periodic"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -268,7 +268,7 @@ noprefix "false"
|
|||
, and eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem periodic"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
@ -309,7 +309,7 @@ evaluation of which is possible but quite non-trivial due to the infinite
|
|||
lattice sum, so we explain it separately in Sect.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
LatexCommand eqref
|
||||
reference "subsec:W operator evaluation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
|
|
Loading…
Reference in New Issue