VSWF definitions
Former-commit-id: 62b0acce66d4e6b228720861c87c529a82087615
This commit is contained in:
parent
94a4d59cfb
commit
9aefacfa00
|
@ -155,7 +155,19 @@ The basic idea of MSTMM is quite simple: the driving electromagnetic field
|
||||||
Repeating the same procedure with all (pairs of) scatterers yields a set
|
Repeating the same procedure with all (pairs of) scatterers yields a set
|
||||||
of linear equations, solution of which gives the coefficients of the scattered
|
of linear equations, solution of which gives the coefficients of the scattered
|
||||||
field in the VSWF bases.
|
field in the VSWF bases.
|
||||||
However,
|
Once these coefficients have been found, one can evaluate various quantities
|
||||||
|
related to the scattering (such as cross sections or the scattered fields)
|
||||||
|
quite easily.
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
However, the expressions appearing in the re-expansions are fairly complicated,
|
||||||
|
and the implementation of MSTMM is extremely error-prone also due to the
|
||||||
|
various conventions used in the literature.
|
||||||
|
Therefore although we do not re-derive from scratch the expressions that
|
||||||
|
can be found elsewhere in literature, we always state them explicitly in
|
||||||
|
our convention.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
|
@ -185,12 +197,40 @@ ity
|
||||||
, and that the whole system is linear, i.e.
|
, and that the whole system is linear, i.e.
|
||||||
the material properties of neither the medium nor the scatterer depend
|
the material properties of neither the medium nor the scatterer depend
|
||||||
on field intensities.
|
on field intensities.
|
||||||
Under these assumptions, the EM fields in
|
Under these assumptions, the EM fields
|
||||||
|
\begin_inset Formula $\vect{\Psi}=\vect E,\vect H$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in
|
||||||
\begin_inset Formula $\medium$
|
\begin_inset Formula $\medium$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
must satisfy the homogeneous vector Helmholtz equation
|
must satisfy the homogeneous vector Helmholtz equation together with the
|
||||||
\begin_inset Formula $\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0$
|
transversality condition
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
\left(\nabla^{2}+k^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
frequency-space Maxwell's equations
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
|
||||||
|
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
@ -208,29 +248,165 @@ todo define
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
with
|
with
|
||||||
\begin_inset Formula $k=TODO$
|
\begin_inset Formula $k=k\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
[TODO REF Jackson?].
|
, as can be derived from the Maxwell's equations [REF Jackson?].
|
||||||
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
|
||||||
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Subsubsection
|
||||||
|
Spherical waves
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
Throughout this text, we will use the same normalisation conventions as
|
Equation
|
||||||
in
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:Helmholtz eq"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be solved by separation of variables in spherical coordinates to give
|
||||||
|
the solutions – the
|
||||||
|
\emph on
|
||||||
|
regular
|
||||||
|
\emph default
|
||||||
|
and
|
||||||
|
\emph on
|
||||||
|
outgoing
|
||||||
|
\emph default
|
||||||
|
vector spherical wavefunctions (VSWFs)
|
||||||
|
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, respectively, defined as follows:
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||||
|
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||||
|
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
|
||||||
|
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $\vect r=r\uvec r$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
,
|
||||||
|
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are the regular spherical Bessel function and spherical Hankel function
|
||||||
|
of the first kind, respectively, as in [DLMF §10.47], and
|
||||||
|
\begin_inset Formula $\vsh{\tau}lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are the
|
||||||
|
\emph on
|
||||||
|
vector spherical harmonics
|
||||||
|
\emph default
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{align*}
|
||||||
|
\vsh 1lm & =\\
|
||||||
|
\vsh 2lm & =\\
|
||||||
|
\vsh 3lm & =
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
In our convention, the (scalar) spherical harmonics
|
||||||
|
\begin_inset Formula $\ush lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are identical to those in [DLMF 14.30.1], i.e.
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where importantly, the Ferrers functions
|
||||||
|
\begin_inset Formula $\dlmfFer lm$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
defined as in [DLMF §14.3(i)] do already contain the Condon-Shortley phase
|
||||||
|
|
||||||
|
\begin_inset Formula $\left(-1\right)^{m}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO názornější definice.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
The convention for VSWFs used here is the same as in [Kristensson 2014];
|
||||||
|
over other conventions used elsewhere in literature, it has several fundamental
|
||||||
|
advantages – most importantly, the translation operators introduced later
|
||||||
|
in eq.
|
||||||
|
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand ref
|
||||||
|
reference "eq:translation op def"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are unitary, and it gives the simplest possible expressions for power transport
|
||||||
|
and cross sections without additional
|
||||||
|
\begin_inset Formula $l,m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-dependent factors (for that reason, we also call our VSWFs as
|
||||||
|
\emph on
|
||||||
|
power-normalised
|
||||||
|
\emph default
|
||||||
|
).
|
||||||
|
Power-normalisation and unitary translation operators are possible to achieve
|
||||||
|
also with real spherical harmonics – such a convention is used in
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "kristensson_scattering_2016"
|
key "kristensson_scattering_2016"
|
||||||
literal "true"
|
literal "false"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsubsection
|
\begin_layout Standard
|
||||||
Spherical waves
|
Its solutions (TODO under which conditions? What vector space do the SVWFs
|
||||||
|
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
Loading…
Reference in New Issue