Rewrite Ewald intro.
Former-commit-id: df9c666b9cb34b45fab00155b0ee2a89f0c7c1e8
This commit is contained in:
parent
f756592bc5
commit
a5cf8505f7
|
@ -953,8 +953,8 @@ literal "false"
|
||||||
basic idea can be used as well, resulting in exponentially convergent summation
|
basic idea can be used as well, resulting in exponentially convergent summation
|
||||||
formulae, but the technical details are considerably more complicated than
|
formulae, but the technical details are considerably more complicated than
|
||||||
in electrostatics.
|
in electrostatics.
|
||||||
For the scalar Helmholtz equation in three dimensions, the formulae were
|
For the scalar Helmholtz equation in three dimensions, the formulae for
|
||||||
developed by Ham & Segall
|
lattice Green's functions were developed by Ham & Segall
|
||||||
\begin_inset CommandInset citation
|
\begin_inset CommandInset citation
|
||||||
LatexCommand cite
|
LatexCommand cite
|
||||||
key "ham_energy_1961"
|
key "ham_energy_1961"
|
||||||
|
@ -988,10 +988,28 @@ literal "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
We will not rederive the formulae here, but for reference, we restate the
|
|
||||||
results in a form independent upon the normalisation and phase conventions
|
\end_layout
|
||||||
for spherical harmonic bases (pointing out some errors in the aforementioned
|
|
||||||
literature) and discuss some practical aspects of the numerical evaluation.
|
\begin_layout Standard
|
||||||
|
For our purposes we do not need directly the lattice Green's functions but
|
||||||
|
rather the related lattice sums of spherical wavefunctions defined in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:sigma lattice sums"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, which can be derived by an analogous procedure.
|
||||||
|
Below, we state the results in a form independent upon the normalisation
|
||||||
|
and phase conventions for spherical harmonic bases (pointing out some errors
|
||||||
|
in the aforementioned literature) and discuss some practical aspects of
|
||||||
|
the numerical evaluation.
|
||||||
|
The derivation of the somewhat more complicated 1D and 2D periodicities
|
||||||
|
is provided in the Supplementary Material.
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status open
|
status open
|
||||||
|
|
||||||
|
@ -1001,7 +1019,7 @@ Tady ještě upřesnit, co vlastně dělám.
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
|
@ -596,6 +596,10 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
, we have
|
, we have
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset Marginal
|
\begin_inset Marginal
|
||||||
status open
|
status open
|
||||||
|
|
||||||
|
@ -607,6 +611,11 @@ Check this carefully.
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
\left(\groupop g\vect E\right)\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(\kappa\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||||
|
|
Loading…
Reference in New Issue