Irrep decomposition
Former-commit-id: aedcdb912573500bcba434ce088ce10887052bd1
This commit is contained in:
parent
526e108ec0
commit
a659e5b1fb
|
@ -758,7 +758,21 @@ If the particle indices are ordered in a way that the particles belonging
|
||||||
\begin_inset Formula $J\left(g\right)$
|
\begin_inset Formula $J\left(g\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
will be a block-diagonal matrix, each block representing one particle orbit.
|
will be a block-diagonal unitary matrix, each block (also unitary) representing
|
||||||
|
the action of
|
||||||
|
\begin_inset Formula $g$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
on one particle orbit.
|
||||||
|
All the
|
||||||
|
\begin_inset Formula $J\left(g\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
s make together a (reducible) linear representation of
|
||||||
|
\begin_inset Formula $G$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
|
@ -767,7 +781,7 @@ Irrep decomposition
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
Knowledge of symmetry group actions
|
Knowledge of symmetry group actions
|
||||||
\begin_inset Formula $D\left(g\right)$
|
\begin_inset Formula $J\left(g\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
on the field expansion coefficients give us the possibility to construct
|
on the field expansion coefficients give us the possibility to construct
|
||||||
|
@ -776,11 +790,251 @@ ing problem matrix
|
||||||
\begin_inset Formula $\left(I-TS\right)$
|
\begin_inset Formula $\left(I-TS\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Let
|
||||||
|
\begin_inset Formula $\Gamma_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
be the
|
||||||
|
\begin_inset Formula $d_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-dimensional irreducible matrix representations of
|
||||||
|
\begin_inset Formula $G$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
consisting of matrices
|
||||||
|
\begin_inset Formula $D^{\Gamma_{n}}\left(g\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Then the projection operators
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
P_{kl}^{\left(\Gamma_{n}\right)}\equiv\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{kl}^{*}J\left(g\right),\quad k,l=1,\dots,d_{n}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
project the full scattering system field expansion coefficient vectors
|
||||||
|
\begin_inset Formula $\rcoeff,\outcoeff$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
onto a subspace corresponding to the irreducible representation
|
||||||
|
\begin_inset Formula $\Gamma_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The projectors can be used to construct a unitary transformation
|
||||||
|
\begin_inset Formula $U$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with components
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{equation}
|
||||||
|
U_{nri;p\tau lm}=\frac{d_{n}}{\left|G\right|}\sum_{g\in G}\left(D^{\Gamma_{n}}\left(g\right)\right)_{rr}^{*}J\left(g\right)_{p'\tau'l'm'(nri);p\tau lm}\label{eq:SAB unitary transformation operator}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $r$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
goes from
|
||||||
|
\begin_inset Formula $1$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
through
|
||||||
|
\begin_inset Formula $d_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $i$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
goes from 1 through the multiplicity of irreducible representation
|
||||||
|
\begin_inset Formula $\Gamma_{n}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in the (reducible) representation of
|
||||||
|
\begin_inset Formula $G$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
spanned by the field expansion coefficients
|
||||||
|
\begin_inset Formula $\rcoeff$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
or
|
||||||
|
\begin_inset Formula $\outcoeff$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The indices
|
||||||
|
\begin_inset Formula $p',\tau',l',m'$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are given by an arbitrary bijective mapping
|
||||||
|
\begin_inset Formula $\left(n,r,i\right)\mapsto\left(p',\tau',l',m'\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
with the constraint that for given
|
||||||
|
\begin_inset Formula $n,r,i$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
there are at least some non-zero elements
|
||||||
|
\begin_inset Formula $U_{nri;p\tau lm}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
For details, we refer the reader to textbooks about group representation
|
||||||
|
theory
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
or linear representations?
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, e.g.
|
||||||
|
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "Chapter 4"
|
||||||
|
key "dresselhaus_group_2008"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
or
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "???"
|
||||||
|
key "bradley_mathematical_1972"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The transformation given by
|
||||||
|
\begin_inset Formula $U$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
transforms the excitation coefficient vectors
|
||||||
|
\begin_inset Formula $\rcoeff,\outcoeff$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
into a new,
|
||||||
|
\emph on
|
||||||
|
symmetry-adapted basis
|
||||||
|
\emph default
|
||||||
.
|
.
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
One can show that if an operator
|
||||||
|
\begin_inset Formula $M$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
acting on the excitation coefficient vectors is invariant under the operations
|
||||||
|
of group
|
||||||
|
\begin_inset Formula $G$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, meaning that
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\forall g\in G:J\left(g\right)MJ\left(g\right)^{\dagger}=M,
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
then in the symmetry-adapted basis,
|
||||||
|
\begin_inset Formula $M$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is block diagonal, or more specifically
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
M_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M{}_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Both the
|
||||||
|
\begin_inset Formula $T$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and
|
||||||
|
\begin_inset Formula $\trops$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
operators (and trivially also the identity
|
||||||
|
\begin_inset Formula $I$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Multiple-scattering problem block form"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
are invariant under the actions of whole system symmetry group, so
|
||||||
|
\begin_inset Formula $\left(I-T\trops\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is also invariant, hence
|
||||||
|
\begin_inset Formula $U\left(I-T\trops\right)U^{\dagger}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is a block-diagonal matrix, and the problem
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Multiple-scattering problem block form"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
can be solved for each block separately.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
From the computational perspective, it is important to note that
|
||||||
|
\begin_inset Formula $U$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is at least as sparse as
|
||||||
|
\begin_inset Formula $J\left(g\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(which is
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
orbit-block
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
diagonal), hence the block-diagonalisation can be performed fast.
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
Kvantifikovat!
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue