Continuos fractions for incomplete gamma, extending the domain a bit.
Former-commit-id: 838b5bd6c34d37348253aa21f45bb7601c8a6abb
This commit is contained in:
parent
20fac6036f
commit
a66f04a8c2
|
@ -1,7 +1,9 @@
|
|||
#include "ewald.h"
|
||||
#include <gsl/gsl_sf_gamma.h>
|
||||
#include <gsl/gsl_sf_expint.h>
|
||||
#include <gsl/gsl_sf_exp.h>
|
||||
#include <gsl/gsl_sf_result.h>
|
||||
#include <gsl/gsl_errno.h>
|
||||
#include <gsl/gsl_machine.h> // Maybe I should rather use DBL_EPSILON instead of GSL_DBL_EPSILON.
|
||||
#include "kahansum.h"
|
||||
#include <math.h>
|
||||
|
@ -33,7 +35,6 @@ void IgnoreUnderflowsGSLErrorHandler (const char * reason,
|
|||
abort();
|
||||
}
|
||||
|
||||
|
||||
// DLMF 8.7.3 (latter expression) for complex second argument
|
||||
// BTW if a is large negative, it might take a while to evaluate.
|
||||
int cx_gamma_inc_series_e(const double a, const complex double z, qpms_csf_result * result) {
|
||||
|
@ -85,6 +86,77 @@ int cx_gamma_inc_series_e(const double a, const complex double z, qpms_csf_resul
|
|||
else GSL_ERROR("Overflow; the absolute value of the z argument is probably too large.", GSL_ETOL); // maybe different error code...
|
||||
}
|
||||
|
||||
/* Continued fraction which occurs in evaluation
|
||||
* of Q(a,z) or Gamma(a,z).
|
||||
* Borrowed from GSL and adapted for complex z.
|
||||
*
|
||||
* 1 (1-a)/z 1/z (2-a)/z 2/z (3-a)/z
|
||||
* F(a,z) = ---- ------- ----- -------- ----- -------- ...
|
||||
* 1 + 1 + 1 + 1 + 1 + 1 +
|
||||
*
|
||||
*/
|
||||
static int
|
||||
cx_gamma_inc_F_CF(const double a, const complex double z, qpms_csf_result * result)
|
||||
{
|
||||
const int nmax = 5000;
|
||||
const double small = DBL_EPSILON * DBL_EPSILON * DBL_EPSILON;
|
||||
|
||||
double hn = 1.0; /* convergent */
|
||||
complex double Cn = 1.0 / small;
|
||||
complex double Dn = 1.0;
|
||||
int n;
|
||||
|
||||
/* n == 1 has a_1, b_1, b_0 independent of a,z,
|
||||
so that has been done by hand */
|
||||
for ( n = 2 ; n < nmax ; n++ )
|
||||
{
|
||||
complex double an;
|
||||
complex double delta;
|
||||
|
||||
if(n % 2)
|
||||
an = 0.5*(n-1)/z;
|
||||
else
|
||||
an = (0.5*n-a)/z;
|
||||
|
||||
Dn = 1.0 + an * Dn;
|
||||
if ( cabs(Dn) < small )
|
||||
Dn = small;
|
||||
Cn = 1.0 + an/Cn;
|
||||
if ( cabs(Cn) < small )
|
||||
Cn = small;
|
||||
Dn = 1.0 / Dn;
|
||||
delta = Cn * Dn;
|
||||
hn *= delta;
|
||||
if(cabs(delta-1.0) < DBL_EPSILON) break;
|
||||
}
|
||||
|
||||
result->val = hn;
|
||||
result->err = 2.0*GSL_DBL_EPSILON * cabs(hn);
|
||||
result->err += GSL_DBL_EPSILON * (2.0 + 0.5*n) * cabs(result->val);
|
||||
|
||||
if(n == nmax)
|
||||
GSL_ERROR ("error in CF for F(a,x)", GSL_EMAXITER);
|
||||
else
|
||||
return GSL_SUCCESS;
|
||||
}
|
||||
|
||||
// Incomplete gamma fuction with complex second argument as continued fraction.
|
||||
int cx_gamma_inc_CF_e(const double a, const complex double z, qpms_csf_result *result)
|
||||
{
|
||||
qpms_csf_result F;
|
||||
gsl_sf_result pre;
|
||||
const complex double am1lgz = (a-1.0)*clog(z); // TODO check branches
|
||||
const int stat_F = cx_gamma_inc_F_CF(a, z, &F);
|
||||
const int stat_E = gsl_sf_exp_err_e(creal(am1lgz - z), GSL_DBL_EPSILON*cabs(am1lgz), &pre);
|
||||
pre.val *= cexp(I * cimag(am1lgz - z)); // TODO add the error estimate for this
|
||||
|
||||
result->val = F.val * pre.val;
|
||||
result->err = fabs(F.err * pre.val) + fabs(F.val * pre.err);
|
||||
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
|
||||
|
||||
return GSL_ERROR_SELECT_2(stat_F, stat_E);
|
||||
}
|
||||
|
||||
|
||||
// incomplete gamma for complex second argument
|
||||
int complex_gamma_inc_e(double a, complex double x, qpms_csf_result *result) {
|
||||
|
@ -96,8 +168,11 @@ int complex_gamma_inc_e(double a, complex double x, qpms_csf_result *result) {
|
|||
result->val = real_gamma_inc_result.val;
|
||||
result->err = real_gamma_inc_result.err;
|
||||
return retval;
|
||||
} else
|
||||
} else if (creal(x) >= 0 && cabs(x) > 0.5)
|
||||
return cx_gamma_inc_CF_e(a, x, result);
|
||||
else
|
||||
return cx_gamma_inc_series_e(a, x, result);
|
||||
|
||||
}
|
||||
|
||||
// Exponential integral for complex argument; !UNTESTED! and probably not needed, as I expressed everything in terms of inc. gammas anyways.
|
||||
|
|
Loading…
Reference in New Issue