Sliced array driving in finiterectlat-constant-driving.py
Former-commit-id: 72b9caa2a3396606b2aaff8ffcd578702926d10d
This commit is contained in:
parent
4bf3bb1bb1
commit
a7c95d0ee0
|
@ -1,7 +1,7 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import math
|
||||
from qpms.argproc import ArgParser
|
||||
from qpms.argproc import ArgParser, make_dict_action, sslice
|
||||
figscale=3
|
||||
|
||||
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
|
||||
|
@ -15,6 +15,13 @@ ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-a
|
|||
ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample')
|
||||
ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth')
|
||||
ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution')
|
||||
ap.add_argument("--xslice", default={None:None}, nargs=2,
|
||||
action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
|
||||
)
|
||||
ap.add_argument("--yslice", default={None:None}, nargs=2,
|
||||
action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
|
||||
)
|
||||
|
||||
|
||||
#ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition")
|
||||
|
||||
|
@ -29,8 +36,8 @@ px, py = a.period
|
|||
|
||||
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
||||
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
||||
defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d_micro-%s" % (
|
||||
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted)
|
||||
defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%s_k_%g_%g_f%geV_L%d_micro-%s" % (
|
||||
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted)
|
||||
logging.info("Default file prefix: %s" % defaultprefix)
|
||||
|
||||
import numpy as np
|
||||
|
@ -44,6 +51,21 @@ from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
|
|||
from qpms.symmetries import point_group_info
|
||||
eh = eV/hbar
|
||||
|
||||
# Check slice ranges and generate all corresponding combinations
|
||||
slicepairs = []
|
||||
slicelabels = set(a.xslice.keys()) | set(a.yslice.keys())
|
||||
for label in slicelabels:
|
||||
rowslices = a.xslice.get(label, None)
|
||||
colslices = a.yslice.get(label, None)
|
||||
# TODO check validity of the slices.
|
||||
if rowslices is None:
|
||||
rowslices = [slice(None, None, None)]
|
||||
if colslices is None:
|
||||
colslices = [slice(None, None, None)]
|
||||
for rs in rowslices:
|
||||
for cs in colslices:
|
||||
slicepairs.append((rs, cs))
|
||||
|
||||
def realdipfieldlabels(yp):
|
||||
if yp == 0: return 'x'
|
||||
if yp == 1: return 'y'
|
||||
|
@ -113,6 +135,27 @@ ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omeg
|
|||
|
||||
wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
|
||||
|
||||
# Mapping between ss particles and grid positions
|
||||
positions = ss.positions
|
||||
xpositions = np.unique(positions[:,0])
|
||||
assert(len(xpositions) == Nx)
|
||||
ypositions = np.unique(positions[:,1])
|
||||
assert(len(ypositions == Ny))
|
||||
# particle positions as integer indices
|
||||
posmap = np.empty((positions.shape[0],2), dtype=int)
|
||||
invposmap = np.empty((Nx, Ny), dtype=int)
|
||||
for i, pos in enumerate(positions):
|
||||
posmap[i,0] = np.searchsorted(xpositions, positions[i,0])
|
||||
posmap[i,1] = np.searchsorted(ypositions, positions[i,1])
|
||||
invposmap[posmap[i,0], posmap[i, 1]] = i
|
||||
|
||||
def fullvec2grid(fullvec, swapxy=False):
|
||||
arr = np.empty((Nx,Ny,nelem), dtype=complex)
|
||||
for pi, offset in enumerate(ss.fullvec_poffsets):
|
||||
ix, iy = posmap[pi]
|
||||
arr[ix, iy] = fullvec[offset:offset+nelem]
|
||||
return np.swapaxes(arr, 0, 1) if swapxy else arr
|
||||
|
||||
|
||||
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
|
||||
|
||||
|
@ -140,10 +183,20 @@ else:
|
|||
driving_full[y,y::nelem] = phases
|
||||
|
||||
|
||||
scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex)
|
||||
# Apply the driving on the specified slices only
|
||||
nsp = len(slicepairs)
|
||||
driving_full_sliced = np.zeros((nsp,) + driving_full.shape, dtype=complex)
|
||||
p1range = np.arange(nelem)
|
||||
for spi in range(nsp):
|
||||
xs, ys = slicepairs[spi]
|
||||
driven_pi = invposmap[xs, ys].flatten()
|
||||
driven_y = ((driven_pi * nelem)[:,None] + p1range[None,:]).flatten()
|
||||
driving_full_sliced[spi][:, driven_y] = driving_full[:, driven_y]
|
||||
|
||||
scattered_full = np.zeros((nsp, nelem, ss.fecv_size),dtype=complex)
|
||||
scattered_ir = [None for iri in range(ss.nirreps)]
|
||||
|
||||
ir_contained = np.ones((nelem, ss.nirreps), dtype=bool)
|
||||
ir_contained = np.ones((nsp, nelem, ss.nirreps), dtype=bool)
|
||||
|
||||
for iri in range(ss.nirreps):
|
||||
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
|
||||
|
@ -154,21 +207,22 @@ for iri in range(ss.nirreps):
|
|||
#translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
|
||||
#logging.info("auxillary translation matrix created")
|
||||
|
||||
scattered_ir[iri] = np.zeros((nelem, ss.saecv_sizes[iri]), dtype=complex)
|
||||
scattered_ir_unpacked = np.zeros((nelem, ss.fecv_size), dtype=complex)
|
||||
scattered_ir[iri] = np.zeros((nsp, nelem, ss.saecv_sizes[iri]), dtype=complex)
|
||||
scattered_ir_unpacked = np.zeros((nsp, nelem, ss.fecv_size), dtype=complex)
|
||||
|
||||
for spi in range(nsp):
|
||||
for y in range(nelem):
|
||||
ã = driving_full[y]
|
||||
ã = driving_full_sliced[spi,y]
|
||||
ãi = cleanarray(ss.pack_vector(ã, iri), copy=False)
|
||||
if np.all(ãi == 0):
|
||||
ir_contained[y, iri] = False
|
||||
ir_contained[spi, y, iri] = False
|
||||
continue
|
||||
Tã = ssw.apply_Tmatrices_full(ã)
|
||||
Tãi = ss.pack_vector(Tã, iri)
|
||||
fi = LU(Tãi)
|
||||
scattered_ir[iri][y] = fi
|
||||
scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri)
|
||||
scattered_full[y] += scattered_ir_unpacked[y]
|
||||
scattered_ir[iri][spi, y] = fi
|
||||
scattered_ir_unpacked[spi, y] = ss.unpack_vector(fi, iri)
|
||||
scattered_full[spi, y] += scattered_ir_unpacked[spi, y]
|
||||
if a.save_gradually:
|
||||
iriout = outfile_tmp + ".%d" % iri
|
||||
np.savez(iriout, iri=iri, meta=vars(a),
|
||||
|
@ -188,9 +242,10 @@ if not math.isnan(a.ccd_distance):
|
|||
ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution)
|
||||
ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij')
|
||||
ccd_points = np.swapaxes(np.stack(ccd_grid, axis=-1).squeeze(axis=-2), 0,1) # First axis is y, second is x, because of imshow...
|
||||
ccd_fields = np.empty((nelem,) + ccd_points.shape, dtype=complex)
|
||||
ccd_fields = np.empty((nsp, nelem,) + ccd_points.shape, dtype=complex)
|
||||
for spi in range(nsp):
|
||||
for y in range(nelem):
|
||||
ccd_fields[y] = ssw.scattered_E(scattered_full[y], ccd_points, btyp=BesselType.HANKEL_PLUS)
|
||||
ccd_fields[spi, y] = ssw.scattered_E(scattered_full[spi, y], ccd_points, btyp=BesselType.HANKEL_PLUS)
|
||||
logging.info("Far fields done")
|
||||
|
||||
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
||||
|
@ -212,32 +267,21 @@ logging.info("Saved to %s" % outfile)
|
|||
|
||||
|
||||
if a.plot or (a.plot_out is not None):
|
||||
positions = ss.positions
|
||||
xpositions = np.unique(positions[:,0])
|
||||
assert(len(xpositions) == Nx)
|
||||
ypositions = np.unique(positions[:,1])
|
||||
assert(len(ypositions == Ny))
|
||||
# particle positions as integer indices
|
||||
posmap = np.empty((positions.shape[0],2), dtype=int)
|
||||
for i, pos in enumerate(positions):
|
||||
posmap[i,0] = np.searchsorted(xpositions, positions[i,0])
|
||||
posmap[i,1] = np.searchsorted(ypositions, positions[i,1])
|
||||
|
||||
def fullvec2grid(fullvec, swapxy=False):
|
||||
arr = np.empty((Nx,Ny,nelem), dtype=complex)
|
||||
for pi, offset in enumerate(ss.fullvec_poffsets):
|
||||
ix, iy = posmap[pi]
|
||||
arr[ix, iy] = fullvec[offset:offset+nelem]
|
||||
return np.swapaxes(arr, 0, 1) if swapxy else arr
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('pdf')
|
||||
from matplotlib import pyplot as plt, cm
|
||||
from matplotlib.backends.backend_pdf import PdfPages
|
||||
t, l, m = bspec.tlm()
|
||||
phasecm = cm.twilight
|
||||
pmcm = cm.bwr
|
||||
abscm = cm.plasma
|
||||
|
||||
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
||||
pp = PdfPages(plotfile)
|
||||
|
||||
for spi in range(nsp):
|
||||
fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 16, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 16), figscale*nelem))
|
||||
for yp in range(0,3): # TODO xy-dipoles instead?
|
||||
axes[0,4*yp+0].set_title("abs / (E,1,%s)" % realdipfieldlabels(yp))
|
||||
|
@ -256,12 +300,12 @@ if a.plot or (a.plot_out is not None):
|
|||
|
||||
|
||||
for y in range(nelem):
|
||||
fulvec = scattered_full[y]
|
||||
fulvec = scattered_full[spi,y]
|
||||
if a.symmetry_adapted is not None:
|
||||
driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5]
|
||||
driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' +
|
||||
"(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in
|
||||
driving_nonzero_y)) # TODO shorten the complex number precision
|
||||
"(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in
|
||||
driving_nonzero_y)) # TODO shorten the complex number precision
|
||||
else:
|
||||
driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],)
|
||||
axes[y,0].set_ylabel(driving_descr)
|
||||
|
@ -282,11 +326,11 @@ driving_nonzero_y)) # TODO shorten the complex number precision
|
|||
axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False)
|
||||
if not math.isnan(a.ccd_distance):
|
||||
fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2)
|
||||
e2vmax = np.amax(np.linalg.norm(ccd_fields[y], axis=-1)**2)
|
||||
xint = abs(ccd_fields[y,...,0])**2
|
||||
yint = abs(ccd_fields[y,...,1])**2
|
||||
xyint = abs(ccd_fields[y,...,0] + ccd_fields[y,...,1])**2
|
||||
zint = abs(ccd_fields[y,...,2])**2
|
||||
e2vmax = np.amax(np.linalg.norm(ccd_fields[spi,y], axis=-1)**2)
|
||||
xint = abs(ccd_fields[spi,y,...,0])**2
|
||||
yint = abs(ccd_fields[spi,y,...,1])**2
|
||||
xyint = abs(ccd_fields[spi,y,...,0] + ccd_fields[spi,y,...,1])**2
|
||||
zint = abs(ccd_fields[spi,y,...,2])**2
|
||||
xintmax = np.amax(xint)
|
||||
yintmax = np.amax(yint)
|
||||
zintmax = np.amax(zint)
|
||||
|
@ -307,8 +351,9 @@ driving_nonzero_y)) # TODO shorten the complex number precision
|
|||
axes[y,gg].yaxis.tick_right()
|
||||
for gg in range(12,15):
|
||||
axes[y,gg].yaxis.set_major_formatter(plt.NullFormatter())
|
||||
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
||||
fig.savefig(plotfile)
|
||||
fig.text(0, 0, str(slicepairs[spi]), horizontalalignment='left', verticalalignment='bottom')
|
||||
pp.savefig()
|
||||
pp.close()
|
||||
|
||||
exit(0)
|
||||
|
||||
|
|
Loading…
Reference in New Issue