References etc.
Former-commit-id: c89c6417e387b6aa228ccdafb4c66438908240d0
This commit is contained in:
parent
a3c6bfd4f0
commit
ae10691d30
File diff suppressed because it is too large
Load Diff
|
@ -678,8 +678,33 @@ literal "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
, but in general one can find them numerically by simulating scattering
|
||||
of a regular spherical wave
|
||||
; for particles with smooth surfaces one can find them numerically using
|
||||
the
|
||||
\emph on
|
||||
null-field method
|
||||
\emph default
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "waterman_new_1969,waterman_symmetry_1971,kristensson_scattering_2016"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
which works well in the most typical cases, but for less common parameter
|
||||
ranges (such as concave shapes, extreme values of aspect ratios or relative
|
||||
refractive index) they might suffer from serious numerical instabilities
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "Sect. 5.8.4"
|
||||
key "mishchenko_scattering_2002"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
In general, simulating scattering of a regular spherical wave
|
||||
\begin_inset Formula $\vswfrtlm{\tau}lm$
|
||||
\end_inset
|
||||
|
||||
|
@ -699,12 +724,21 @@ literal "false"
|
|||
\end_inset
|
||||
|
||||
, see below.
|
||||
For the numerical evaluation of
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For the numerical evaluation of
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices we typically use the scuff-tmatrix tool from the free software
|
||||
SCUFF-EM suite
|
||||
-matrices for simple axially symmetric scatterers in QPMS, we typically
|
||||
use the null-field equations, and for more complicated scatterers we use
|
||||
the
|
||||
\family typewriter
|
||||
scuff-tmatrix
|
||||
\family default
|
||||
tool from the free software SCUFF-EM suite
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "reid_efficient_2015,SCUFF2"
|
||||
|
@ -744,11 +778,20 @@ The magnitude of the
|
|||
|
||||
-matrix elements depends heavily on the scatterer's size compared to the
|
||||
wavelength.
|
||||
Fortunately, the
|
||||
Typically,
|
||||
\begin_inset Foot
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
It has been proven that the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix of a bounded scatterer is a compact operator
|
||||
-matrix of a bounded scatterer is a compact operator for
|
||||
\emph on
|
||||
acoustic
|
||||
\emph default
|
||||
scattering problems
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "ganesh_convergence_2012"
|
||||
|
@ -756,17 +799,14 @@ literal "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO
|
||||
.
|
||||
While we conjecture that this holds also for bounded electromagnetic scatterers
|
||||
, we are not aware of a definitive proof.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
, so from certain multipole degree onwards,
|
||||
from certain multipole degree onwards,
|
||||
\begin_inset Formula $l,l'>L$
|
||||
\end_inset
|
||||
|
||||
|
@ -782,7 +822,7 @@ TODO
|
|||
\begin_inset Formula $L$
|
||||
\end_inset
|
||||
|
||||
gives a good approximation of the actual infinite-dimensional itself.
|
||||
gives a good approximation of the actual infinite-dimensional operator.
|
||||
If the incident field is well-behaved, i.e.
|
||||
the expansion coefficients
|
||||
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
|
||||
|
@ -1015,7 +1055,7 @@ where
|
|||
\end_inset
|
||||
|
||||
is well-defined only when
|
||||
\begin_inset Formula $\eta$
|
||||
\begin_inset Formula $\kappa^{2}\eta$
|
||||
\end_inset
|
||||
|
||||
is real.
|
||||
|
@ -1043,6 +1083,26 @@ where
|
|||
\end_inset
|
||||
|
||||
is negative and its magnitude equals to power absorbed by the scatterer.
|
||||
In other words, the hermitian operator
|
||||
\begin_inset Formula $\Pi=\Tp{}^{\dagger}\Tp{}+\left(\Tp{}^{\dagger}+\Tp{}\right)/2$
|
||||
\end_inset
|
||||
|
||||
must be negative (semi-)definite for a particle without gain.
|
||||
This provides a simple but very useful sanity check on the numerically
|
||||
obtained
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrices: non-negligible positive eigenvalues of
|
||||
\begin_inset Formula $\Pi$
|
||||
\end_inset
|
||||
|
||||
indicate either too drastic multipole truncation or another problem with
|
||||
the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection
|
||||
|
|
|
@ -834,7 +834,7 @@ literal "false"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Its basic idea is to decomposethe lattice-summed function in two parts:
|
||||
Its basic idea is to decompose the lattice-summed function in two parts:
|
||||
a short-range part that decays fast and can be summed directly, and a long-rang
|
||||
e part which decays poorly but is fairly smooth everywhere, so that its
|
||||
Fourier transform decays fast enough, and to deal with the long range part
|
||||
|
@ -959,6 +959,10 @@ W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|+1
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -968,6 +972,11 @@ Check signs
|
|||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
where the constant factors are exactly the same as in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
|
|
|
@ -260,6 +260,22 @@ superposition
|
|||
\end_inset
|
||||
|
||||
-matrix method
|
||||
\emph default
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "litvinov_rigorous_2008"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
|
||||
\emph on
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
|
@ -271,7 +287,10 @@ a.k.a.
|
|||
\end_inset
|
||||
|
||||
|
||||
\emph default
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
, and it has been implemented previously for a limited subset of problems
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
@ -284,6 +303,14 @@ Refs; list the limitations of available codes?
|
|||
|
||||
.
|
||||
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "markkanen_fast_2017,markkanen_fastmm_2017"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -340,13 +367,29 @@ We hereby release our MSTMM implementation, the
|
|||
\emph on
|
||||
QPMS Photonic Multiple Scattering
|
||||
\emph default
|
||||
suite, as free software under the GNU General Public License version 3.
|
||||
suite
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "necada_qpms_2019"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, as free software under the GNU General Public License version 3.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO refs to the code repositories once it is published.
|
||||
(remember to clean / update the repos before submitting)
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -358,25 +401,16 @@ TODO refs to the code repositories once it is published.
|
|||
s.
|
||||
Moreover, it includes the improvements covered in this article, enabling
|
||||
to simulate even larger systems and also infinite structures with periodicity
|
||||
in one or two or three dimensions, which can be used e.g.
|
||||
for quickly evaluating dispersions of such structures.
|
||||
in one, two or three dimensions, which can be used e.g.
|
||||
for evaluating dispersions of such structures.
|
||||
The QPMS suite contains a core C library, Python bindings and several utilities
|
||||
for routine computations.
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Such as?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
for routine computations, such as scattering cross sections under plane
|
||||
wave irradiation or lattice modes of two-dimensional periodic arrays.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
, such as TODO.
|
||||
TODO před odesláním zkontrolovat, co všechno to v danou chvíli umí.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue