Implement remaining minor Päivi's comments, comment on Γ branches.
Former-commit-id: 985cf66a7fde1b8b66807f82d4e9dc2942419e60
This commit is contained in:
parent
3b6dedf4a2
commit
b56c9f8ee3
|
@ -2171,7 +2171,7 @@ reference "eq:absorption CS single"
|
||||||
-th particle reads according to
|
-th particle reads according to
|
||||||
\begin_inset CommandInset ref
|
\begin_inset CommandInset ref
|
||||||
LatexCommand eqref
|
LatexCommand eqref
|
||||||
reference "eq:regular vswf translation"
|
reference "eq:reqular vswf coefficient vector translation"
|
||||||
plural "false"
|
plural "false"
|
||||||
caps "false"
|
caps "false"
|
||||||
noprefix "false"
|
noprefix "false"
|
||||||
|
@ -2194,7 +2194,7 @@ whereas the contributions of fields scattered from each particle expanded
|
||||||
is, according to
|
is, according to
|
||||||
\begin_inset CommandInset ref
|
\begin_inset CommandInset ref
|
||||||
LatexCommand eqref
|
LatexCommand eqref
|
||||||
reference "eq:singular vswf translation"
|
reference "eq:singular to regular vswf coefficient vector translation"
|
||||||
plural "false"
|
plural "false"
|
||||||
caps "false"
|
caps "false"
|
||||||
noprefix "false"
|
noprefix "false"
|
||||||
|
|
|
@ -121,8 +121,8 @@ Although large finite systems are where MSTMM excels the most, there are
|
||||||
Other methods might be already fast enough, but MSTMM will be faster in
|
Other methods might be already fast enough, but MSTMM will be faster in
|
||||||
most cases in which there is enough spacing between the neighboring particles.
|
most cases in which there is enough spacing between the neighboring particles.
|
||||||
MSTMM works well with any space group symmetry the system might have (as
|
MSTMM works well with any space group symmetry the system might have (as
|
||||||
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
|
opposed to, for example, FDTD with a cubic mesh applied to a honeycomb
|
||||||
which makes e.g.
|
lattice), which makes e.g.
|
||||||
application of group theory in mode analysis quite easy.
|
application of group theory in mode analysis quite easy.
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status open
|
status open
|
||||||
|
@ -134,7 +134,7 @@ Topology anoyne?
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
And finally, having a method that handles well both infinite and large
|
And finally, having a method that handles well both infinite and large
|
||||||
finite system gives a possibility to study finite-size effects in periodic
|
finite systems gives a possibility to study finite-size effects in periodic
|
||||||
scatterer arrays.
|
scatterer arrays.
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
|
@ -171,7 +171,7 @@ noprefix "false"
|
||||||
\begin_inset Formula $d$
|
\begin_inset Formula $d$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-dimensional integar multiindex
|
-dimensional integer multi-index
|
||||||
\begin_inset Formula $\vect n\in\ints^{d}$
|
\begin_inset Formula $\vect n\in\ints^{d}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -473,7 +473,7 @@ noprefix "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
is close enough to zero.
|
is close enough to zero.
|
||||||
However, this approach is quite expensive, for
|
However, this approach is quite expensive, since
|
||||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -540,7 +540,7 @@ TODO write this in a clean way
|
||||||
).
|
).
|
||||||
A somehow challenging step is to distinguish the different bands that can
|
A somehow challenging step is to distinguish the different bands that can
|
||||||
all be very close to the empty lattice approximation, especially if the
|
all be very close to the empty lattice approximation, especially if the
|
||||||
particles in the systems are small.
|
particles in the system are small.
|
||||||
In high-symmetry points of the Brilloin zone, this can be solved by factorising
|
In high-symmetry points of the Brilloin zone, this can be solved by factorising
|
||||||
|
|
||||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||||
|
@ -586,7 +586,7 @@ literal "false"
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
Computing the Fourier sum of the translation operator
|
Computing the lattice sum of the translation operator
|
||||||
\begin_inset CommandInset label
|
\begin_inset CommandInset label
|
||||||
LatexCommand label
|
LatexCommand label
|
||||||
name "subsec:W operator evaluation"
|
name "subsec:W operator evaluation"
|
||||||
|
@ -597,7 +597,7 @@ name "subsec:W operator evaluation"
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
The problem evaluating
|
The problem in evaluating
|
||||||
\begin_inset CommandInset ref
|
\begin_inset CommandInset ref
|
||||||
LatexCommand eqref
|
LatexCommand eqref
|
||||||
reference "eq:W definition"
|
reference "eq:W definition"
|
||||||
|
@ -608,11 +608,16 @@ reference "eq:W definition"
|
||||||
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$
|
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
that does not in the strict sense converge for any
|
, so that its lattice sum does not in the strict sense converge for any
|
||||||
|
|
||||||
\begin_inset Formula $d>1$
|
\begin_inset Formula $d>1$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-dimensional lattice.
|
-dimensional lattice unless
|
||||||
|
\begin_inset Formula $\Im\kappa>0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status open
|
status open
|
||||||
|
|
||||||
|
@ -647,14 +652,13 @@ literal "false"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
Its basic idea is to decompose the divide the lattice-summed function in
|
Its basic idea is to decomposethe lattice-summed function in two parts:
|
||||||
two parts: a short-range part that decays fast and can be summed directly,
|
a short-range part that decays fast and can be summed directly, and a long-rang
|
||||||
and a long-range part which decays poorly but is fairly smooth everywhere,
|
e part which decays poorly but is fairly smooth everywhere, so that its
|
||||||
so that its Fourier transform decays fast enough, and to deal with the
|
Fourier transform decays fast enough, and to deal with the long range part
|
||||||
long range part by Poisson summation over the reciprocal lattice.
|
by Poisson summation over the reciprocal lattice.
|
||||||
The same idea can be used also in this case case of linear electrodynamic
|
The same idea can be used also in the case of linear electrodynamic problems,
|
||||||
problems, just the technical details are more complicated than in electrostatic
|
just the technical details are more complicated than in electrostatics.
|
||||||
s.
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
@ -695,11 +699,20 @@ literal "false"
|
||||||
|
|
||||||
and can be applied to our case.
|
and can be applied to our case.
|
||||||
If we formally label
|
If we formally label
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset Marginal
|
\begin_inset Marginal
|
||||||
status open
|
status open
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
\begin_layout Plain Layout
|
||||||
Check signs.
|
FP: Check signs.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -820,7 +833,7 @@ In all three dimensionality cases, the lattice sums are divided into short-range
|
||||||
status open
|
status open
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
\begin_layout Plain Layout
|
||||||
Check sign of s
|
FP: Check sign of s
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -831,27 +844,42 @@ Check sign of s
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
|
||||||
+\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part}
|
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||||
|
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
Here
|
||||||
\begin_inset Note Note
|
\begin_inset Formula $\Gamma(a,z)$
|
||||||
status open
|
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
|
||||||
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
|
|
||||||
\begin_inset Formula $\sigma_{n}^{m(0)}$
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
?
|
is the incomplete Gamma function.
|
||||||
\end_layout
|
The last (
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
self-interaction
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
) term in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Ewald in 3D short-range part"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
, which appears only when the displacement vector
|
||||||
|
\begin_inset Formula $\vect s$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
coincides with a lattice point, is often noted separately in the literature.
|
||||||
|
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status open
|
status open
|
||||||
|
|
||||||
|
@ -870,7 +898,7 @@ The long-range part for cases
|
||||||
status open
|
status open
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
\begin_layout Plain Layout
|
||||||
check sign of
|
FP: check sign of
|
||||||
\begin_inset Formula $\vect k$
|
\begin_inset Formula $\vect k$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -882,8 +910,8 @@ check sign of
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||||
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
||||||
\end{multline}
|
\end{multline}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -895,7 +923,7 @@ and for
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -968,28 +996,185 @@ The Ewald parameter
|
||||||
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
|
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
.
|
.
|
||||||
|
For one-dimensional, square, and cubic lattices, the optimal choice is
|
||||||
|
|
||||||
|
\begin_inset Formula $\eta=\sqrt{\pi}/p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
where
|
||||||
|
\begin_inset Formula $p$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is the direct lattice period
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
key "linton_lattice_2010"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset Marginal
|
\begin_inset Marginal
|
||||||
status open
|
status open
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
\begin_layout Plain Layout
|
||||||
What would be a good choice?
|
Whatabout different geometries?
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
\begin_inset Marginal
|
\begin_inset Marginal
|
||||||
status open
|
status open
|
||||||
|
|
||||||
\begin_layout Plain Layout
|
\begin_layout Plain Layout
|
||||||
I have some error estimates derived in my notes.
|
FP: I have some error estimates derived in my notes.
|
||||||
Should I include them?
|
Should I include them?
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
For a two-dimensional lattice, the incomplete
|
||||||
|
\begin_inset Formula $\Gamma$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-function
|
||||||
|
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in the long-range part has a branch point at
|
||||||
|
\begin_inset Formula $z=0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and special care has to be taken when choosing the appropriate branch.
|
||||||
|
If the wavenumber of the medium has a positive imaginary part,
|
||||||
|
\begin_inset Formula $\Im\kappa>0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, then the translation operator elements
|
||||||
|
\begin_inset Formula $\trops_{\tau lm;\tau'l'm}\left(\kappa\vect r\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
decay exponentially as
|
||||||
|
\begin_inset Formula $\left|\vect r\right|\to\infty$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and the lattice sum in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:W definition"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
converges absolutely even in the direct space, and it is equal to the Ewald
|
||||||
|
sum with the principal value of the incomplete
|
||||||
|
\begin_inset Formula $\Gamma$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
function being used in
|
||||||
|
\begin_inset CommandInset ref
|
||||||
|
LatexCommand eqref
|
||||||
|
reference "eq:Ewald in 3D long-range part 1D 2D"
|
||||||
|
plural "false"
|
||||||
|
caps "false"
|
||||||
|
noprefix "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
For other values of
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, the branch choice is made in such way that
|
||||||
|
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is analytically continued even when the wavenumber's imaginary part crosses
|
||||||
|
the real axis.
|
||||||
|
The principal value of
|
||||||
|
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
has a branch cut at the negative real half-axis, which, considering the
|
||||||
|
lattice sum as a function of
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, translates into branch cuts starting at
|
||||||
|
\begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
and continuing in straight lines towards
|
||||||
|
\begin_inset Formula $+\infty$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
Therefore, in the quadrant
|
||||||
|
\begin_inset Formula $\Re z<0,\Im z\ge0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
we use the continuation of the principal value from
|
||||||
|
\begin_inset Formula $\Re z<0,\Im z<0$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
instead of the principal branch
|
||||||
|
\begin_inset CommandInset citation
|
||||||
|
LatexCommand cite
|
||||||
|
after "8.2.9"
|
||||||
|
key "NIST:DLMF"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, moving the branch cut in the
|
||||||
|
\begin_inset Formula $z$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
variable to the positive imaginary half-axis.
|
||||||
|
This moves the branch cuts w.r.t.
|
||||||
|
|
||||||
|
\begin_inset Formula $\kappa$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
away from the real axis.
|
||||||
|
\begin_inset Note Note
|
||||||
|
status open
|
||||||
|
|
||||||
|
\begin_layout Plain Layout
|
||||||
|
TODO Figure.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Detailed physical interpretation of the remaining branch cuts is an open
|
||||||
|
question.
|
||||||
\begin_inset Note Note
|
\begin_inset Note Note
|
||||||
status open
|
status open
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue