Implement remaining minor Päivi's comments, comment on Γ branches.
Former-commit-id: 985cf66a7fde1b8b66807f82d4e9dc2942419e60
This commit is contained in:
parent
3b6dedf4a2
commit
b56c9f8ee3
|
@ -2171,7 +2171,7 @@ reference "eq:absorption CS single"
|
|||
-th particle reads according to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:regular vswf translation"
|
||||
reference "eq:reqular vswf coefficient vector translation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
@ -2194,7 +2194,7 @@ whereas the contributions of fields scattered from each particle expanded
|
|||
is, according to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:singular vswf translation"
|
||||
reference "eq:singular to regular vswf coefficient vector translation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
|
|
@ -121,8 +121,8 @@ Although large finite systems are where MSTMM excels the most, there are
|
|||
Other methods might be already fast enough, but MSTMM will be faster in
|
||||
most cases in which there is enough spacing between the neighboring particles.
|
||||
MSTMM works well with any space group symmetry the system might have (as
|
||||
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
|
||||
which makes e.g.
|
||||
opposed to, for example, FDTD with a cubic mesh applied to a honeycomb
|
||||
lattice), which makes e.g.
|
||||
application of group theory in mode analysis quite easy.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -134,7 +134,7 @@ Topology anoyne?
|
|||
\end_inset
|
||||
|
||||
And finally, having a method that handles well both infinite and large
|
||||
finite system gives a possibility to study finite-size effects in periodic
|
||||
finite systems gives a possibility to study finite-size effects in periodic
|
||||
scatterer arrays.
|
||||
\end_layout
|
||||
|
||||
|
@ -171,7 +171,7 @@ noprefix "false"
|
|||
\begin_inset Formula $d$
|
||||
\end_inset
|
||||
|
||||
-dimensional integar multiindex
|
||||
-dimensional integer multi-index
|
||||
\begin_inset Formula $\vect n\in\ints^{d}$
|
||||
\end_inset
|
||||
|
||||
|
@ -473,7 +473,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
is close enough to zero.
|
||||
However, this approach is quite expensive, for
|
||||
However, this approach is quite expensive, since
|
||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
|
@ -540,7 +540,7 @@ TODO write this in a clean way
|
|||
).
|
||||
A somehow challenging step is to distinguish the different bands that can
|
||||
all be very close to the empty lattice approximation, especially if the
|
||||
particles in the systems are small.
|
||||
particles in the system are small.
|
||||
In high-symmetry points of the Brilloin zone, this can be solved by factorising
|
||||
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
|
@ -586,7 +586,7 @@ literal "false"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Computing the Fourier sum of the translation operator
|
||||
Computing the lattice sum of the translation operator
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "subsec:W operator evaluation"
|
||||
|
@ -597,7 +597,7 @@ name "subsec:W operator evaluation"
|
|||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The problem evaluating
|
||||
The problem in evaluating
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W definition"
|
||||
|
@ -608,11 +608,16 @@ reference "eq:W definition"
|
|||
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$
|
||||
\end_inset
|
||||
|
||||
that does not in the strict sense converge for any
|
||||
, so that its lattice sum does not in the strict sense converge for any
|
||||
|
||||
\begin_inset Formula $d>1$
|
||||
\end_inset
|
||||
|
||||
-dimensional lattice.
|
||||
-dimensional lattice unless
|
||||
\begin_inset Formula $\Im\kappa>0$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
@ -647,14 +652,13 @@ literal "false"
|
|||
\end_inset
|
||||
|
||||
.
|
||||
Its basic idea is to decompose the divide the lattice-summed function in
|
||||
two parts: a short-range part that decays fast and can be summed directly,
|
||||
and a long-range part which decays poorly but is fairly smooth everywhere,
|
||||
so that its Fourier transform decays fast enough, and to deal with the
|
||||
long range part by Poisson summation over the reciprocal lattice.
|
||||
The same idea can be used also in this case case of linear electrodynamic
|
||||
problems, just the technical details are more complicated than in electrostatic
|
||||
s.
|
||||
Its basic idea is to decomposethe lattice-summed function in two parts:
|
||||
a short-range part that decays fast and can be summed directly, and a long-rang
|
||||
e part which decays poorly but is fairly smooth everywhere, so that its
|
||||
Fourier transform decays fast enough, and to deal with the long range part
|
||||
by Poisson summation over the reciprocal lattice.
|
||||
The same idea can be used also in the case of linear electrodynamic problems,
|
||||
just the technical details are more complicated than in electrostatics.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
@ -695,11 +699,20 @@ literal "false"
|
|||
|
||||
and can be applied to our case.
|
||||
If we formally label
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Check signs.
|
||||
FP: Check signs.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -820,7 +833,7 @@ In all three dimensionality cases, the lattice sums are divided into short-range
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Check sign of s
|
||||
FP: Check sign of s
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
@ -831,26 +844,41 @@ Check sign of s
|
|||
\begin_layout Standard
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||
+\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right),\label{eq:Ewald in 3D short-range part}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
|
||||
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa/4\xi^{2}}\xi^{2l}\ud\xi\\
|
||||
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
|
||||
\begin_inset Formula $\sigma_{n}^{m(0)}$
|
||||
Here
|
||||
\begin_inset Formula $\Gamma(a,z)$
|
||||
\end_inset
|
||||
|
||||
?
|
||||
\end_layout
|
||||
is the incomplete Gamma function.
|
||||
The last (
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
self-interaction
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
) term in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Ewald in 3D short-range part"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, which appears only when the displacement vector
|
||||
\begin_inset Formula $\vect s$
|
||||
\end_inset
|
||||
|
||||
coincides with a lattice point, is often noted separately in the literature.
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -870,7 +898,7 @@ The long-range part for cases
|
|||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
check sign of
|
||||
FP: check sign of
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
|
@ -882,8 +910,8 @@ check sign of
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{multline}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(-j,\frac{k^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
||||
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
|
||||
\times\sum_{\vect K\in\Lambda^{*}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
@ -895,7 +923,7 @@ and for
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
||||
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right).\label{eq:Ewald in 3D long-range part 3D}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -969,27 +997,184 @@ The Ewald parameter
|
|||
\end_inset
|
||||
|
||||
.
|
||||
For one-dimensional, square, and cubic lattices, the optimal choice is
|
||||
|
||||
\begin_inset Formula $\eta=\sqrt{\pi}/p$
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
is the direct lattice period
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "linton_lattice_2010"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
What would be a good choice?
|
||||
Whatabout different geometries?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset Marginal
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
I have some error estimates derived in my notes.
|
||||
FP: I have some error estimates derived in my notes.
|
||||
Should I include them?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
For a two-dimensional lattice, the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
-function
|
||||
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
in the long-range part has a branch point at
|
||||
\begin_inset Formula $z=0$
|
||||
\end_inset
|
||||
|
||||
and special care has to be taken when choosing the appropriate branch.
|
||||
If the wavenumber of the medium has a positive imaginary part,
|
||||
\begin_inset Formula $\Im\kappa>0$
|
||||
\end_inset
|
||||
|
||||
, then the translation operator elements
|
||||
\begin_inset Formula $\trops_{\tau lm;\tau'l'm}\left(\kappa\vect r\right)$
|
||||
\end_inset
|
||||
|
||||
decay exponentially as
|
||||
\begin_inset Formula $\left|\vect r\right|\to\infty$
|
||||
\end_inset
|
||||
|
||||
and the lattice sum in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W definition"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
converges absolutely even in the direct space, and it is equal to the Ewald
|
||||
sum with the principal value of the incomplete
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
function being used in
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Ewald in 3D long-range part 1D 2D"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
For other values of
|
||||
\begin_inset Formula $\kappa$
|
||||
\end_inset
|
||||
|
||||
, the branch choice is made in such way that
|
||||
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is analytically continued even when the wavenumber's imaginary part crosses
|
||||
the real axis.
|
||||
The principal value of
|
||||
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
|
||||
\end_inset
|
||||
|
||||
has a branch cut at the negative real half-axis, which, considering the
|
||||
lattice sum as a function of
|
||||
\begin_inset Formula $\kappa$
|
||||
\end_inset
|
||||
|
||||
, translates into branch cuts starting at
|
||||
\begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$
|
||||
\end_inset
|
||||
|
||||
and continuing in straight lines towards
|
||||
\begin_inset Formula $+\infty$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
Therefore, in the quadrant
|
||||
\begin_inset Formula $\Re z<0,\Im z\ge0$
|
||||
\end_inset
|
||||
|
||||
we use the continuation of the principal value from
|
||||
\begin_inset Formula $\Re z<0,\Im z<0$
|
||||
\end_inset
|
||||
|
||||
instead of the principal branch
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "8.2.9"
|
||||
key "NIST:DLMF"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, moving the branch cut in the
|
||||
\begin_inset Formula $z$
|
||||
\end_inset
|
||||
|
||||
variable to the positive imaginary half-axis.
|
||||
This moves the branch cuts w.r.t.
|
||||
|
||||
\begin_inset Formula $\kappa$
|
||||
\end_inset
|
||||
|
||||
away from the real axis.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
TODO Figure.
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
Detailed physical interpretation of the remaining branch cuts is an open
|
||||
question.
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
|
|
Loading…
Reference in New Issue