Práce na 1D ewaldovi; du dom.
Former-commit-id: dbecec91884dd005a2001c71d4bbe50de74fc8d0
This commit is contained in:
parent
577a4a5a28
commit
b90bf2875b
|
@ -242,6 +242,11 @@ theorems-starred
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset FormulaMacro
|
||||
\newcommand{\expint}{\mathrm{E}}
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Title
|
||||
|
@ -628,7 +633,7 @@ reference "eq:W definition"
|
|||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
and legendre
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:W sum in reciprocal space"
|
||||
|
@ -3720,6 +3725,70 @@ reference "eq:Ewald in 3D origin part"
|
|||
can be used directly without modifications.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
Another possibility is to consider the chain to be aligned along the
|
||||
\begin_inset Formula $z$
|
||||
\end_inset
|
||||
|
||||
-axis and to apply the formula
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "(4.64)"
|
||||
key "linton_lattice_2010"
|
||||
|
||||
\end_inset
|
||||
|
||||
instead.
|
||||
Let us rewrite it again in the spherical-harmonic-normalisation-agnostic
|
||||
way (N.B.
|
||||
the relations
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "(4.10)"
|
||||
key "linton_lattice_2010"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $\sigma_{n}^{m}=\left(-1\right)^{m}\hat{\tau}_{n}^{m}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "(A.5)"
|
||||
key "linton_lattice_2010"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $P_{n}^{m}\left(\pm1\right)=\left(\pm1\right)^{n}\delta_{m0}$
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "(A.8)"
|
||||
key "linton_lattice_2010"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula $Y_{n}^{m}\left(\theta,\phi\right)=\left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}$
|
||||
\end_inset
|
||||
|
||||
)
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\sigma_{n}^{m} & = & -\frac{i^{n+1}}{k^{n+1}a}\delta_{m0}\sqrt{\frac{2n+1}{4\pi}}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}\\
|
||||
& = & -\frac{i^{n+1}}{k^{n+1}a}Y_{n}^{m}\left(\hat{\vect z}\sgn\tilde{\beta}_{\mu}\right)\delta_{m0}\left(\sgn\tilde{\beta}_{\mu}\right)^{-n}\sum_{\mu\in\ints}\sum_{j=0}^{\left[n/2\right]}\frac{\left(-1\right)^{j}}{j!}\eta^{2j}\expint_{j+1}\left(\frac{k^{2}\gamma^{\mu}}{4\eta^{2}}\right)\frac{n!\tilde{\beta}_{\mu}^{n-2j}}{\left(n-2j\right)!}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
@ -3914,7 +3983,7 @@ where the spherical Hankel transform
|
|||
2)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -3924,7 +3993,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
|||
3)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -3937,7 +4006,7 @@ so it is not unitary.
|
|||
An unitary convention would look like this:
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
@ -3991,8 +4060,8 @@ where the Hankel transform of order
|
|||
is defined as
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
||||
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
|
||||
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
||||
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
|
121
qpms/ewald.c
121
qpms/ewald.c
|
@ -355,8 +355,9 @@ int ewald3_21_xy_sigma_long (
|
|||
const cart3_t beta,
|
||||
const cart3_t particle_shift
|
||||
)
|
||||
|
||||
{
|
||||
assert((latdim & LAT_XYONLY) && (latdim & SPACE3D));
|
||||
assert((latdim & LAT1D) || (latdim & LAT2D));
|
||||
const qpms_y_t nelem_sc = c->nelem_sc;
|
||||
const qpms_l_t lMax = c->lMax;
|
||||
|
||||
|
@ -379,6 +380,7 @@ int ewald3_21_xy_sigma_long (
|
|||
// recycleable values if rbeta_pq stays the same:
|
||||
complex double gamma_pq;
|
||||
complex double z;
|
||||
double factor1d = 1; // the "additional" factor for the 1D case (then it is not 1)
|
||||
// space for Gamma_pq[j]'s
|
||||
qpms_csf_result Gamma_pq[lMax/2+1];
|
||||
|
||||
|
@ -408,6 +410,7 @@ int ewald3_21_xy_sigma_long (
|
|||
const bool new_rbeta_pq = (!pgen_generates_shifted_points) || (pgen_retdata.flags & PGEN_NEWR);
|
||||
if (!new_rbeta_pq) assert(rbeta_pq == rbeta_pq_prev);
|
||||
|
||||
|
||||
// R-DEPENDENT BEGIN
|
||||
if (new_rbeta_pq) {
|
||||
gamma_pq = lilgamma(rbeta_pq/k);
|
||||
|
@ -417,9 +420,10 @@ int ewald3_21_xy_sigma_long (
|
|||
// we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above
|
||||
if(creal(z) < 0)
|
||||
Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above
|
||||
if(!(retval==0 ||retval==GSL_EUNDRFLW)) abort();
|
||||
if(!(retval==0 || retval==GSL_EUNDRFLW)) abort();
|
||||
}
|
||||
// --------------- ZDE JSEM SKONČIL. TODO NEZAPOMEŇ TAKY POŘEŠIT PŘÍPAD 1D VS 2D
|
||||
if (latdim & LAT1D)
|
||||
factor1d = k * M_SQRT1_2 * .5 * gamma_pq;
|
||||
}
|
||||
// R-DEPENDENT END
|
||||
|
||||
|
@ -446,7 +450,7 @@ int ewald3_21_xy_sigma_long (
|
|||
summand *= Gamma_pq[j].val; // GGG
|
||||
ckahanadd(&jsum, &jsum_c, summand);
|
||||
}
|
||||
jsum *= phasefac; // PFC
|
||||
jsum *= phasefac * factor1d; // PFC
|
||||
ckahanadd(target + y, target_c + y, jsum);
|
||||
if(err) kahanadd(err + y, err_c + y, jsum_err);
|
||||
}
|
||||
|
@ -466,6 +470,115 @@ int ewald3_21_xy_sigma_long (
|
|||
}
|
||||
|
||||
|
||||
// 1D chain along the z-axis; not many optimisations here as the same
|
||||
// shifted beta radius could be recycled only once anyways
|
||||
int ewald3_1_z_sigma_long (
|
||||
complex double *target, // must be c->nelem_sc long
|
||||
double *err,
|
||||
const qpms_ewald32_constants_t *c,
|
||||
const double unitcell_volume /* length in this case */,
|
||||
const LatticeDimensionality latdim,
|
||||
PGenSph *pgen_K, const bool pgen_generates_shifted_points
|
||||
/* If false, the behaviour corresponds to the old ewald32_sigma_long_points_and_shift,
|
||||
* so the function assumes that the generated points correspond to the unshifted reciprocal Bravais lattice,
|
||||
* and adds beta to the generated points before calculations.
|
||||
* If true, it assumes that they are already shifted.
|
||||
*/,
|
||||
const cart3_t beta,
|
||||
const cart3_t particle_shift
|
||||
)
|
||||
{
|
||||
assert(LatticeDimensionality_checkflags(latdim, LAT_1D_IN_3D_ZONLY));
|
||||
assert(beta.x == 0 && beta.y == 0);
|
||||
assert(particle_shift.x == 0 && particle_shift.y == 0);
|
||||
const double beta_z = beta.z;
|
||||
const double particle_shift_z = particle_shift_z;
|
||||
const qpms_y_t nelem_sc = c->nelem_sc;
|
||||
const qpms_l_t lMax = c->lMax;
|
||||
|
||||
// Manual init of the ewald summation targets
|
||||
complex double *target_c = calloc(nelem_sc, sizeof(complex double));
|
||||
memset(target, 0, nelem_sc * sizeof(complex double));
|
||||
double *err_c = NULL;
|
||||
if (err) {
|
||||
err_c = calloc(nelem_sc, sizeof(double));
|
||||
memset(err, 0, nelem_sc * sizeof(double));
|
||||
}
|
||||
|
||||
PGenSingleReturnData pgen_retdata;
|
||||
// CHOOSE POINT BEGIN
|
||||
while ((pgen_retdata = PGenSph_next(pgen_K)).flags & PGEN_NOTDONE) { // BEGIN POINT LOOP
|
||||
assert(pgen_retdata.flags & PGEN_AT_Z);
|
||||
double K_z, beta_mu_z;
|
||||
if (pgen_generates_shifted_points) {
|
||||
beta_mu_z = ((pgen_retdata.point_sph.theta == 0) ?
|
||||
pgen_retdata.point_sph.r : -pgen_retdata.point_sph.r); //!!!CHECKSIGN!!!
|
||||
K_z = beta_mu_z - beta_z;
|
||||
} else { // as in the old _points_and_shift functions
|
||||
K_z = ((pgen_retdata.point_sph.theta == 0) ?
|
||||
pgen_retdata.point_sph.r : -pgen_retdata.point_sph.r); // !!!CHECKSIGN!!!
|
||||
beta_mu_z = K_z + beta_z;
|
||||
}
|
||||
// CHOOSE POINT END
|
||||
|
||||
const complex double phasefac = cexp(I * K_z * particle_shift_z); // POINT-DEPENDENT (PFC) // !!!CHECKSIGN!!!
|
||||
|
||||
// R-DEPENDENT BEGIN
|
||||
gamma_pq = lilgamma(rbeta_pq/k);
|
||||
z = csq(gamma_pq*k/(2*eta)); // Když o tom tak přemýšlím, tak tohle je vlastně vždy reálné
|
||||
for(qpms_l_t j = 0; j <= lMax/2; ++j) {
|
||||
int retval = complex_gamma_inc_e(0.5-j, z, Gamma_pq+j);
|
||||
// we take the other branch, cf. [Linton, p. 642 in the middle]: FIXME instead use the C11 CMPLX macros and fill in -O*I part to z in the line above
|
||||
if(creal(z) < 0)
|
||||
Gamma_pq[j].val = conj(Gamma_pq[j].val); //FIXME as noted above
|
||||
if(!(retval==0 || retval==GSL_EUNDRFLW)) abort();
|
||||
}
|
||||
if (latdim & LAT1D)
|
||||
factor1d = k * M_SQRT1_2 * .5 * gamma_pq;
|
||||
// R-DEPENDENT END
|
||||
|
||||
// TODO optimisations: all the j-dependent powers can be done for each j only once, stored in array
|
||||
// and just fetched for each n, m pair
|
||||
for(qpms_l_t n = 0; n <= lMax; ++n)
|
||||
for(qpms_m_t m = -n; m <= n; ++m) {
|
||||
if((m+n) % 2 != 0) // odd coefficients are zero.
|
||||
continue;
|
||||
const qpms_y_t y = qpms_mn2y_sc(m, n);
|
||||
const complex double e_imalpha_pq = cexp(I*m*arg_pq);
|
||||
complex double jsum, jsum_c; ckahaninit(&jsum, &jsum_c);
|
||||
double jsum_err, jsum_err_c; kahaninit(&jsum_err, &jsum_err_c); // TODO do I really need to kahan sum errors?
|
||||
assert((n-abs(m))/2 == c->s1_jMaxes[y]);
|
||||
for(qpms_l_t j = 0; j <= c->s1_jMaxes[y]/*(n-abs(m))/2*/; ++j) { // FIXME </<= ?
|
||||
complex double summand = pow(rbeta_pq/k, n-2*j)
|
||||
* e_imalpha_pq * c->legendre0[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m) // This line can actually go outside j-loop
|
||||
* cpow(gamma_pq, 2*j-1) // * Gamma_pq[j] bellow (GGG) after error computation
|
||||
* c->s1_constfacs[y][j];
|
||||
if(err) {
|
||||
// FIXME include also other errors than Gamma_pq's relative error
|
||||
kahanadd(&jsum_err, &jsum_err_c, Gamma_pq[j].err * cabs(summand));
|
||||
}
|
||||
summand *= Gamma_pq[j].val; // GGG
|
||||
ckahanadd(&jsum, &jsum_c, summand);
|
||||
}
|
||||
jsum *= phasefac * factor1d; // PFC
|
||||
ckahanadd(target + y, target_c + y, jsum);
|
||||
if(err) kahanadd(err + y, err_c + y, jsum_err);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
rbeta_pq_prev = rbeta_pq;
|
||||
#endif
|
||||
} // END POINT LOOP
|
||||
|
||||
free(err_c);
|
||||
free(target_c);
|
||||
for(qpms_y_t y = 0; y < nelem_sc; ++y) // CFC common factor from above
|
||||
target[y] *= commonfac;
|
||||
if(err)
|
||||
for(qpms_y_t y = 0; y < nelem_sc; ++y)
|
||||
err[y] *= commonfac;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
struct sigma2_integrand_params {
|
||||
int n;
|
||||
|
|
|
@ -21,10 +21,17 @@ typedef enum LatticeDimensionality {
|
|||
LAT_2D_IN_3D = 34,
|
||||
LAT_3D_IN_3D = 40,
|
||||
// special coordinate arrangements (indicating possible optimisations)
|
||||
LAT_ZONLY = 64,
|
||||
LAT_XYONLY = 128,
|
||||
LAT_1D_IN_3D_ZONLY = 97, // LAT1D | SPACE3D | 64
|
||||
LAT_2D_IN_3D_XYONLY = 162 // LAT2D | SPACE3D | 128
|
||||
} LatticeDimensionality;
|
||||
|
||||
inline static bool LatticeDimensionality_checkflags(
|
||||
LatticeDimensionality a, LatticeDimensionality flags_a_has_to_contain) {
|
||||
return ((a & flags_a_has_to_contain) == flags_a_has_to_contain);
|
||||
}
|
||||
|
||||
#include <math.h>
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
|
|
Loading…
Reference in New Issue