pi, tau zerolim jednoduché výrazy v Taylorově normalisaci
Former-commit-id: db59f269beb52d1c25f8a5a923cb42c14791bfb5
This commit is contained in:
parent
338a671d16
commit
b927ddb791
|
@ -214,6 +214,9 @@ def zJn(n, z, J=1):
|
||||||
|
|
||||||
|
|
||||||
# The following 4 funs have to be refactored, possibly merged
|
# The following 4 funs have to be refactored, possibly merged
|
||||||
|
|
||||||
|
# FIXME: this can be expressed simply as:
|
||||||
|
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
||||||
def π̃_zerolim(nmax): # seems OK
|
def π̃_zerolim(nmax): # seems OK
|
||||||
"""
|
"""
|
||||||
lim_{θ→ 0-} π̃(cos θ)
|
lim_{θ→ 0-} π̃(cos θ)
|
||||||
|
@ -248,6 +251,8 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
|
||||||
π̃_y = prenorm * π̃_y
|
π̃_y = prenorm * π̃_y
|
||||||
return π̃_y
|
return π̃_y
|
||||||
|
|
||||||
|
# FIXME: this can be expressed simply as
|
||||||
|
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
||||||
def τ̃_zerolim(nmax):
|
def τ̃_zerolim(nmax):
|
||||||
"""
|
"""
|
||||||
lim_{θ→ 0-} τ̃(cos θ)
|
lim_{θ→ 0-} τ̃(cos θ)
|
||||||
|
|
|
@ -1717,12 +1717,34 @@ Numerics:
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
TODO
|
Misc
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Itemize
|
\begin_layout Itemize
|
||||||
Päivi's suggestion: suppress the dipole and let it interact only with the
|
The
|
||||||
higher multipoles.
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
zero limits
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
of
|
||||||
|
\begin_inset Formula $\tilde{\pi},\tilde{\tau}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
functions in Taylor's normalisation can be expressed as
|
||||||
|
\lang finnish
|
||||||
|
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\lim_{\theta\to0}\tilde{\pi}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1})\\
|
||||||
|
\lim_{\theta\to0}\tilde{\tau}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1})
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Standard
|
\begin_layout Standard
|
||||||
|
|
Loading…
Reference in New Issue