pi, tau zerolim jednoduché výrazy v Taylorově normalisaci
Former-commit-id: db59f269beb52d1c25f8a5a923cb42c14791bfb5
This commit is contained in:
parent
338a671d16
commit
b927ddb791
|
@ -214,6 +214,9 @@ def zJn(n, z, J=1):
|
|||
|
||||
|
||||
# The following 4 funs have to be refactored, possibly merged
|
||||
|
||||
# FIXME: this can be expressed simply as:
|
||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
||||
def π̃_zerolim(nmax): # seems OK
|
||||
"""
|
||||
lim_{θ→ 0-} π̃(cos θ)
|
||||
|
@ -248,6 +251,8 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
|
|||
π̃_y = prenorm * π̃_y
|
||||
return π̃_y
|
||||
|
||||
# FIXME: this can be expressed simply as
|
||||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
||||
def τ̃_zerolim(nmax):
|
||||
"""
|
||||
lim_{θ→ 0-} τ̃(cos θ)
|
||||
|
|
|
@ -1717,12 +1717,34 @@ Numerics:
|
|||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
TODO
|
||||
Misc
|
||||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Päivi's suggestion: suppress the dipole and let it interact only with the
|
||||
higher multipoles.
|
||||
The
|
||||
\begin_inset Quotes eld
|
||||
\end_inset
|
||||
|
||||
zero limits
|
||||
\begin_inset Quotes erd
|
||||
\end_inset
|
||||
|
||||
of
|
||||
\begin_inset Formula $\tilde{\pi},\tilde{\tau}$
|
||||
\end_inset
|
||||
|
||||
functions in Taylor's normalisation can be expressed as
|
||||
\lang finnish
|
||||
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray*}
|
||||
\lim_{\theta\to0}\tilde{\pi}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1})\\
|
||||
\lim_{\theta\to0}\tilde{\tau}_{mn}\left(\cos\theta\right) & = & -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1})
|
||||
\end{eqnarray*}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
Loading…
Reference in New Issue