Start defining convention parameters
Former-commit-id: b9607cc7721cce5cfe9af12d216caeb8c33415bf
This commit is contained in:
parent
67035e01a2
commit
c6177163ae
|
@ -1,6 +1,44 @@
|
||||||
VSWF conventions
|
VSWF conventions
|
||||||
================
|
================
|
||||||
|
|
||||||
|
In general, the (transversal) VSWFs can be defined using (some) vector spherical harmonics
|
||||||
|
as follows: \f[
|
||||||
|
\wfm\pr{k\vect r}_{lm} = \sphbes_l(kr) \vshrot_{lm} (\uvec r),\\
|
||||||
|
\wfe\pr{k\vect r}_{lm} = \frac{\frac{\ud}{\ud(kr)}\pr{kr\sphbes_l(kr)}}{kr} \vshgrad_{lm}(\uvec r)
|
||||||
|
+ \sqrt{l(l+1)} \frac{\sphbes_l(kr)}{kr} \vshrad_{lm}(\uvec r),
|
||||||
|
\f]
|
||||||
|
where at this point, we don't have much expectations regarding the
|
||||||
|
normalisations and phases of the
|
||||||
|
"rotational", "gradiental" and "radial" vector spherical harmonics
|
||||||
|
\f$ \vshrot, \vshgrad, \vshrad \f$, and the waves can be of whatever "direction"
|
||||||
|
(regular, outgoing, etc.) depending on the kind of the spherical Bessel function
|
||||||
|
\f$ \sphbes \f$.
|
||||||
|
We only require that the spherical harmonic degree \f$ l \f$
|
||||||
|
is what it is supposed to be. The meaning of the order $m$ may vary depending
|
||||||
|
on convention. Moreover, in order to \f$ \wfe \f$ be a valid "electric" multipole wave,
|
||||||
|
there is a fixed relation between radial and gradiental vector spherical harmonics
|
||||||
|
(more on that later).
|
||||||
|
|
||||||
|
Let us define the "dual" vector spherical harmonics \f$ \vshD_{\tau lm} \f$ as follows:
|
||||||
|
\f[
|
||||||
|
\int_\Omega \vsh_{\tau lm} (\uvec r) \cdot \vshD_{\tau' l'm} (\uvec r) \, \ud \Omega
|
||||||
|
= \delta_{\tau', \tau}\delta_{l',l} \delta_{m',m}
|
||||||
|
\f]
|
||||||
|
where the \f$ \cdot \f$ symbol here means the bilinear form of the vector components
|
||||||
|
without complex conjugation (which is included in the "duality" mapping).
|
||||||
|
|
||||||
|
For the sake of non-ambiguity, let us define the "canonical" associated Legendre polynomials
|
||||||
|
as in \cite DLMF TODO exact refs:
|
||||||
|
\f[
|
||||||
|
\rawLeg{l}{0}(x) = \frac{1}{2^n n!} \frac{\ud^n}{\ud x^n} \pr{x^2-1}^n , \\
|
||||||
|
\rawLeg{l}{m}(x) = \pr{1-x^2}^{m/2} \frac{\ud^m}{\ud x^m} \rawLeg{l}{0},\quad\abs{x}\le 1, m \ge 0, \\
|
||||||
|
\rawLeg{l}{m}(x) = (-1)^\abs{m} \frac{(l-\abs{m})!}{(l+\abs{m})!} \rawLeg{l}{\abs{m}},
|
||||||
|
\quad \abs{x} \le 1, m < 0.
|
||||||
|
\f]
|
||||||
|
|
||||||
|
|
||||||
|
Literature convention table
|
||||||
|
---------------------------
|
||||||
|
|
||||||
| Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|
| Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
|
||||||
|--- |--- |--- |--- |--- |--- |--- |--- |
|
|--- |--- |--- |--- |--- |--- |--- |--- |
|
||||||
|
|
|
@ -1,11 +1,28 @@
|
||||||
MathJax.Hub.Config({
|
MathJax.Hub.Config({
|
||||||
TeX: {
|
TeX: {
|
||||||
Macros: {
|
Macros: {
|
||||||
|
|
||||||
|
// Abs: ['\\left\\lvert #2 \\right\\rvert_{\\text{#1}}', 2, ""] // optional arg. example
|
||||||
|
// from https://stackoverflow.com/questions/24628668/how-to-define-custom-macros-in-mathjax
|
||||||
vect: ["{\\mathbf{#1}}",1],
|
vect: ["{\\mathbf{#1}}",1],
|
||||||
abs: ["{\\left|{#1}\\right|}",1],
|
abs: ["{\\left|{#1}\\right|}",1],
|
||||||
ud: "{\\mathrm{d}}",
|
ud: "{\\mathrm{d}}",
|
||||||
pr: ["{\\left({#1}\\right)}", 1], // parentheses to save typing
|
pr: ["{\\left({#1}\\right)}", 1], // parentheses to save typing
|
||||||
uvec: ["{\\mathbf{\\hat{#1}}}", 1],
|
uvec: ["{\\mathbf{\\hat{#1}}}", 1],
|
||||||
|
|
||||||
|
vsh: "{\\mathbf{A}}", // vector spherical harmonic, general
|
||||||
|
vshD: "\\mathbf{A}^\\dagger", // dual vector spherical harmonic, general
|
||||||
|
vshrad: "{\\mathbf{A}_3}", // vector spherical harmonic radial, general
|
||||||
|
vshrot: "{\\mathbf{A}_1}", // vector spherical harmonic "rotational", general
|
||||||
|
vshgrad: "{\\mathbf{A}_2}", // vector spherical harmonic "gradiental", general
|
||||||
|
vshradD: "{\\mathbf{A}_3}^\\dagger}", // dual vector spherical harmonic radial, general
|
||||||
|
vshrotD: "{\\mathbf{A}_1^\\dagger}", // dual vector spherical harmonic "rotational", general
|
||||||
|
vshgradD: "{\\mathbf{A}_2^\\dagger}", // dual vector spherical harmonic "gradiental", general
|
||||||
|
wfe: "{\\mathbf{N}}", // Electric wave general
|
||||||
|
wfm: "{\\mathbf{M}}", // Magnetic wave general
|
||||||
|
sphbes: "{z}", // General spherical Bessel fun
|
||||||
|
rawLeg: ["{P_{#1}^{#2}}", 2], // "Canonical" associated Legendre polynomial
|
||||||
|
|
||||||
// Kristensson's VSWFs, complex version (2014 notes)
|
// Kristensson's VSWFs, complex version (2014 notes)
|
||||||
wfkcreg: "{\\vect{v}}", // regular wave
|
wfkcreg: "{\\vect{v}}", // regular wave
|
||||||
wfkcout: "{\\vect{u}}", // outgoing wave
|
wfkcout: "{\\vect{u}}", // outgoing wave
|
||||||
|
|
Loading…
Reference in New Issue