Fixed decorators (not elegant but working)

Former-commit-id: 8f54570f4413fdbc7544a2b4fe3ea183290026e7
This commit is contained in:
Marek Nečada 2016-12-06 18:20:23 +02:00
parent 2b64a50244
commit c9631d217f
2 changed files with 46 additions and 42 deletions

View File

@ -29,20 +29,24 @@ except ImportError:
Accordingly, we define our own jit decorator that handles
different versions of numba or does nothing if numba is not
present. Note that functions that include unicode identifiers
must be decorated with @jit(u=True)
must be decorated with @ujit
'''
def jit(u=False):
def resdec(f):
if u and use_jit_utf8:
return numba.jit(f)
if (not u) and use_jit:
#def dummywrap(f):
# return f
def jit(f):
if use_jit:
return numba.jit(f)
else:
return f
def ujit(f):
if use_jit_utf8:
return numba.jit(f)
else:
return f
return resdec
# Coordinate transforms for arrays of "arbitrary" shape
@jit(u=True)
@ujit
def cart2sph(cart,axis=-1):
if (cart.shape[axis] != 3):
raise ValueError("The converted array has to have dimension 3"
@ -54,7 +58,7 @@ def cart2sph(cart,axis=-1):
φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself
return np.concatenate((r,θ,φ),axis=axis)
@jit(u=True)
@ujit
def sph2cart(sph, axis=-1):
if (sph.shape[axis] != 3):
raise ValueError("The converted array has to have dimension 3"
@ -66,7 +70,7 @@ def sph2cart(sph, axis=-1):
z = r * np.cos(θ)
return np.concatenate((x,y,z),axis=axis)
@jit(u=True)
@ujit
def sph_loccart2cart(loccart, sph, axis=-1):
"""
Transformation of vector specified in local orthogonal coordinates
@ -116,7 +120,7 @@ def sph_loccart2cart(loccart, sph, axis=-1):
out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂
return out
@jit(u=True)
@ujit
def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
"""
Returns the local cartesian basis in terms of global cartesian basis.
@ -152,7 +156,7 @@ def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
out = np.concatenate((x,y,z),axis=cartaxis)
return out
@jit(u=False)
@jit
def lpy(nmax, z):
"""
Associated legendre function and its derivatative at z in the 'y-indexing'.
@ -259,7 +263,7 @@ def zJn(n, z, J=1):
# FIXME: this can be expressed simply as:
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
@jit(u=True)
@ujit
def π̃_zerolim(nmax): # seems OK
"""
lim_{θ 0-} π̃(cos θ)
@ -277,7 +281,7 @@ def π̃_zerolim(nmax): # seems OK
π̃_y = prenorm * π̃_y
return π̃_y
@jit(u=True)
@ujit
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
"""
lim_{θ π+} π̃(cos θ)
@ -297,7 +301,7 @@ def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky
# FIXME: this can be expressed simply as
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
@jit(u=True)
@ujit
def τ̃_zerolim(nmax):
"""
lim_{θ 0-} τ̃(cos θ)
@ -308,7 +312,7 @@ def τ̃_zerolim(nmax):
p0[minus1mmask] = -p0[minus1mmask]
return p0
@jit(u=True)
@ujit
def τ̃_pilim(nmax):
"""
lim_{θ π+} τ̃(cos θ)
@ -319,7 +323,7 @@ def τ̃_pilim(nmax):
t[plus1mmask] = -t[plus1mmask]
return t
@jit(u=True)
@ujit
def get_π̃τ̃_y1(θ,nmax):
# TODO replace with the limit functions (below) when θ approaches
# the extreme values at about 1e-6 distance
@ -339,7 +343,7 @@ def get_π̃τ̃_y1(θ,nmax):
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
return (π̃_y,τ̃_y)
@jit(u=True)
@ujit
def vswf_yr1(pos_sph,nmax,J=1):
"""
As vswf_yr, but evaluated only at single position (i.e. pos_sph has
@ -396,7 +400,7 @@ def vswf_yr1(pos_sph,nmax,J=1):
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
# (ny*(ny+1)*factorial(ny+my))
# )
@jit(u=True)
@ujit
def zplane_pq_y(nmax, betap = 0):
"""
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
@ -415,7 +419,7 @@ def zplane_pq_y(nmax, betap = 0):
#import warnings
@jit(u=True)
@ujit
def plane_pq_y(nmax, kdir_cart, E_cart):
"""
The plane wave expansion coefficients for any direction kdir_cart
@ -472,13 +476,13 @@ def plane_pq_y(nmax, kdir_cart, E_cart):
# Functions copied from scattering_xu, additionaly normalized
from py_gmm.gmm import vec_trans as vc
@jit(u=True)
@ujit
def q_max(m,n,μ,ν):
return min(n,ν,(n+ν-abs(m+μ))/2)
# returns array with indices corresponding to q
# argument q does nothing for now
@jit(u=True)
@ujit
def a_q(m,n,μ,ν,q = None):
qm=q_max(m,n,μ,ν)
res, err= vc.gaunt_xu(m,n,μ,ν,qm)
@ -489,7 +493,7 @@ def a_q(m,n,μ,ν,q = None):
# All arguments are single numbers (for now)
# ZDE VYCHÁZEJÍ DIVNÁ ZNAMÉNKA
@jit(u=True)
@ujit
def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The à translation coefficient for spherical vector waves.
@ -548,7 +552,7 @@ def Ã(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
return presum * np.sum(summandq)
# ZDE OPĚT JINAK ZNAMÉNKA než v Xu (J. comp. phys 127, 285)
@jit(u=True)
@ujit
def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
"""
The B̃ translation coefficient for spherical vector waves.
@ -613,7 +617,7 @@ def B̃(m,n,μ,ν,kdlj,θlj,φlj,r_ge_d,J):
# In[7]:
# Material parameters
@jit(u=True)
@ujit
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
@ -621,7 +625,7 @@ def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
# In[8]:
# Mie scattering
@jit(u=True)
@ujit
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
@ -701,7 +705,7 @@ def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
return (RH, RV, TH, TV)
@jit(u=True)
@ujit
def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
Implementation according to Kristensson, page 50
@ -738,7 +742,7 @@ def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
return 1j* k_e*np.sum(G_y,axis=0)
@jit(u=True)
@ujit
def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
r1_cart (destination), r2_cart (source) and the result are in cartesian coordinates
@ -793,7 +797,7 @@ def G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e,
G_source_dest = sph_loccart2cart(G_source_dest, sph=orig2dest_sph, axis=-1)
return G_source_dest
@jit(u=True)
@ujit
def G_Mie_scat_cart(source_cart, dest_cart, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
"""
TODO
@ -813,7 +817,7 @@ def cross_section_Mie(a, nmax, k_i, k_e, μ_i, μ_e,):
# In[9]:
# From PRL 112, 253601 (1)
@jit(u=True)
@ujit
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
om = k * c
z = (r-a)/a
@ -835,7 +839,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
# From PRL 112, 253601 (1)
@jit(u=True)
@ujit
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
om = k * c
z = (r-a)/a
@ -844,7 +848,7 @@ def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
@jit(u=True)
@ujit
def G0_dip_1(r_cart,k):
"""
Free-space dyadic Green's function in terms of the spherical vector waves.
@ -861,15 +865,15 @@ def G0_dip_1(r_cart,k):
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
# (The numerical value is correct only at the regular part, i.e. r != 0)
@jit(u=True)
@ujit
def _P(z):
return (1-1/z+1/(z*z))
@jit(u=True)
@ujit
def _Q(z):
return (-1+3/z-3/(z*z))
# [1, (9)] FIXME The sign here is most likely wrong!!!
@jit(u=True)
@ujit
def G0_analytical(r #cartesian!
, k):
I=np.identity(3)
@ -883,7 +887,7 @@ def G0_analytical(r #cartesian!
))
# [1, (11)]
@jit(u=True)
@ujit
def G0L_analytical(r, k):
I=np.identity(3)
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
@ -896,7 +900,7 @@ def G0L_analytical(r, k):
def G0T_analytical(r, k):
return G0_analytical(r,k) - G0L_analytical(r,k)
@jit(u=True)
@ujit
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
my, ny = get_mn_y(nmax)
nelem = len(my)
@ -1067,7 +1071,7 @@ def _scuffTMatrixConvert_EM_01(EM):
else:
return None
@jit(u=True)
@ujit
def loadScuffTMatrices(fileName):
"""
TODO doc
@ -1186,7 +1190,7 @@ def scatter_plane_wave(omega, epsilon_b, positions, Tmatrices, k_dirs, E_0s, #sa
pass
import warnings
@jit(u=True)
@ujit
def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_dirs, E_0s,
return_pq_0 = False, return_pq= False, return_xy = False, watch_time = False):
"""
@ -1418,7 +1422,7 @@ def scatter_plane_wave_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, k_
import warnings
@jit(u=True)
@ujit
def scatter_constmultipole_rectarray(omega, epsilon_b, xN, yN, xd, yd, TMatrices, pq_0_c = 1,
return_pq= False, return_xy = False, watch_time = False):
"""

View File

@ -12,7 +12,7 @@ qpms_c = Extension('qpms_c',
sources = ['qpms/qpms_c.pyx'])
setup(name='qpms',
version = "0.1.3",
version = "0.1.5",
packages=['qpms'],
# setup_requires=['setuptools_cython'],
install_requires=['cython>=0.21','quaternion','spherical_functions','py_gmm'],