Wigner-Seitz cell (untested)

Former-commit-id: fb16e8e607bcf6de8b4049147df649bcfdecd855
This commit is contained in:
Marek Nečada 2017-06-27 14:50:18 +03:00
parent 3eaa1e49fa
commit ccde3d76df
1 changed files with 43 additions and 0 deletions

View File

@ -77,4 +77,47 @@ def classifyLatticeSingle(b1, b2, tolerance=1e-13):
else:
return LatticeType.OBLIQUE
def range2D(maxN, mini=1, minj=0):
"""
"Triangle indices"
Generates pairs of non-negative integer indices (i, j) such that
i + j maxN, i mini, j minj.
TODO doc and possibly different orderings
"""
for maxn in range(min(mini, minj), maxN+1): # i + j == maxn
for i in range(mini, maxn + 1):
yield (i, maxn - i)
def cellWignerSeitz(b1, b2,):
"""
Given basis vectors, returns the corners of the Wigner-Seitz unit cell
(w1, w2, -w1, w2) for rectangular and square lattice or
(w1, w2, w3, -w1, -w2, -w3) otherwise
"""
def solveWS(v1, v2):
v1x = v1[0]
v1y = v1[1]
v2x = v2[0]
v2y = v2[1]
lsm = ((-v1y, v2y), (v1x, -v2x))
rs = ((v1x-v2x)/2, (v1y - v2y)/2)
t = np.linalg.solve(lsm, rs)
return np.array(v1)/2 + t[0]*np.array((v1y, -v1x))
b1, b2 = reduceBasisSingle(b1, b2)
latticeType = classifyLaticeSingle(b1, b2)
if latticeType is LatticeType.RECTANGULAR or latticeType is LatticeType.SQUARE:
return np.array( (
(+b1+b2),
(+b2-b1),
(-b1-b2),
(-b2+b1),
)) / 2
else:
b3 = b2 - b1
bvs = (b1, b2, b3, -b1, -b2, -b3)
return np.array([solveWS(bvs[i], bvs[(i+1)%6]] for i in range(6)])