Use higher precision in some 2D irrep matrices.
Former-commit-id: 9d6fa78f2157601fbec4fee16a1c51c093333d9b
This commit is contained in:
parent
22d9f05ef8
commit
d2d0eba40c
|
@ -10,6 +10,8 @@ import numbers
|
||||||
import re
|
import re
|
||||||
ň = None
|
ň = None
|
||||||
|
|
||||||
|
s3long = np.sqrt(np.longdouble(3.))
|
||||||
|
|
||||||
def grouprep_try(tdict, src, im, srcgens, imgens, immultop = None, imcmp = None):
|
def grouprep_try(tdict, src, im, srcgens, imgens, immultop = None, imcmp = None):
|
||||||
tdict[src] = im
|
tdict[src] = im
|
||||||
for i in range(len(srcgens)):
|
for i in range(len(srcgens)):
|
||||||
|
@ -192,13 +194,13 @@ def generate_grouprep(srcgroup, im_identity, srcgens, imgens, immultop = None, i
|
||||||
|
|
||||||
# matrices appearing in 2d representations of common groups as used in Bradley, Cracknell p. 61 (with arabic names instead of greek, because lambda is a keyword)
|
# matrices appearing in 2d representations of common groups as used in Bradley, Cracknell p. 61 (with arabic names instead of greek, because lambda is a keyword)
|
||||||
epsilon = np.eye(2)
|
epsilon = np.eye(2)
|
||||||
alif = np.array(((-1/2,-sqrt(3)/2),(sqrt(3)/2,-1/2)))
|
alif = np.array(((-1/2,-s3long/2),(s3long/2,-1/2)))
|
||||||
bih = np.array(((-1/2,sqrt(3)/2),(-sqrt(3)/2,-1/2)))
|
bih = np.array(((-1/2,s3long/2),(-s3long/2,-1/2)))
|
||||||
kaf = np.array(((0,1),(1,0)))
|
kaf = np.array(((0,1),(1,0)))
|
||||||
lam = np.array(((1,0),(0,-1)))
|
lam = np.array(((1,0),(0,-1)))
|
||||||
ra = np.array(((0,-1),(1,0)))
|
ra = np.array(((0,-1),(1,0)))
|
||||||
mim = np.array(((-1/2,-sqrt(3)/2),(-sqrt(3)/2,1/2)))
|
mim = np.array(((-1/2,-s3long/2),(-s3long/2,1/2)))
|
||||||
nun = np.array(((-1/2,sqrt(3)/2),(sqrt(3)/2,1/2)))
|
nun = np.array(((-1/2,s3long/2),(s3long/2,1/2)))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue