symmetries global intro and copypasta from Rui's paper
Former-commit-id: fce7a1273471bd31c964e9e9072accc866aada81
This commit is contained in:
parent
76abecce48
commit
d702b11bc1
|
@ -731,7 +731,7 @@ Concrete comparison with other methods.
|
|||
\end_layout
|
||||
|
||||
\begin_layout Itemize
|
||||
Fix notation (mainly index) clashes in infinite lattices.
|
||||
Fix and unify notation (mainly indices) in infinite lattices section.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -1565,7 +1565,7 @@ m & -m' & m'-m
|
|||
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
|
||||
m & -m' & m'-m
|
||||
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
|
||||
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}.\label{eq:translation operator}
|
||||
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.\label{eq:translation operator}
|
||||
\end{multline}
|
||||
|
||||
\end_inset
|
||||
|
|
|
@ -382,6 +382,25 @@ dispersion relation
|
|||
\end_inset
|
||||
|
||||
will acquire complex values.
|
||||
The solution
|
||||
\begin_inset Formula $\outcoeffp{\vect 0}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is then obtained as the right
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
CHECK!
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
singular vector of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
corresponding to the zero singular value.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
|
|
@ -0,0 +1,409 @@
|
|||
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||||
\lyxformat 583
|
||||
\begin_document
|
||||
\begin_header
|
||||
\save_transient_properties true
|
||||
\origin unavailable
|
||||
\textclass article
|
||||
\use_default_options true
|
||||
\maintain_unincluded_children false
|
||||
\language finnish
|
||||
\language_package default
|
||||
\inputencoding utf8
|
||||
\fontencoding auto
|
||||
\font_roman "default" "default"
|
||||
\font_sans "default" "default"
|
||||
\font_typewriter "default" "default"
|
||||
\font_math "auto" "auto"
|
||||
\font_default_family default
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_roman_osf false
|
||||
\font_sans_osf false
|
||||
\font_typewriter_osf false
|
||||
\font_sf_scale 100 100
|
||||
\font_tt_scale 100 100
|
||||
\use_microtype false
|
||||
\use_dash_ligatures true
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
\bibtex_command default
|
||||
\index_command default
|
||||
\paperfontsize default
|
||||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry false
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 1
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 1
|
||||
\use_minted 0
|
||||
\use_lineno 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
\color #008000
|
||||
\end_index
|
||||
\secnumdepth 3
|
||||
\tocdepth 3
|
||||
\paragraph_separation indent
|
||||
\paragraph_indentation default
|
||||
\is_math_indent 0
|
||||
\math_numbering_side default
|
||||
\quotes_style english
|
||||
\dynamic_quotes 0
|
||||
\papercolumns 1
|
||||
\papersides 1
|
||||
\paperpagestyle default
|
||||
\tablestyle default
|
||||
\tracking_changes false
|
||||
\output_changes false
|
||||
\html_math_output 0
|
||||
\html_css_as_file 0
|
||||
\html_be_strict false
|
||||
\end_header
|
||||
|
||||
\begin_body
|
||||
|
||||
\begin_layout Section
|
||||
Symmetries
|
||||
\begin_inset CommandInset label
|
||||
LatexCommand label
|
||||
name "sec:Symmetries"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
If the system has nontrivial point group symmetries, group theory gives
|
||||
additional understanding of the system properties, and can be used to reduce
|
||||
the computational costs.
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
As an example, if our system has a
|
||||
\begin_inset Formula $D_{2h}$
|
||||
\end_inset
|
||||
|
||||
symmetry and our truncated
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
matrix has size
|
||||
\begin_inset Formula $N\times N$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Note Note
|
||||
status open
|
||||
|
||||
\begin_layout Plain Layout
|
||||
nepoužívám
|
||||
\begin_inset Formula $N$
|
||||
\end_inset
|
||||
|
||||
už v jiném kontextu?
|
||||
\end_layout
|
||||
|
||||
\end_inset
|
||||
|
||||
it can be block-diagonalized into eight blocks of size about
|
||||
\begin_inset Formula $N/8\times N/8$
|
||||
\end_inset
|
||||
|
||||
, each of which can be LU-factorised separately (this is due to the fact
|
||||
that
|
||||
\begin_inset Formula $D_{2h}$
|
||||
\end_inset
|
||||
|
||||
has eight different one-dimensional irreducible representations).
|
||||
This can reduce both memory and time requirements to solve the scattering
|
||||
problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
by a factor of 64.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In periodic systems (problems
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
) due to small number of particles per unit cell, the costliest part is
|
||||
usually the evaluation of the lattice sums in the
|
||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
matrix, not the linear algebra.
|
||||
However, the lattice modes can be searched for in each irrep separately,
|
||||
and the irrep dimension gives a priori information about mode degeneracy.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Finite systems
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Periodic systems
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
A general overview of utilizing group theory to find lattice modes at high-symme
|
||||
try points of the Brillouin zone can be found e.g.
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "chapters 10–11"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
; here we use the same notation.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
We analyse the symmetries of the system in the same VSWF representation
|
||||
as used in the
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
-matrix formalism introduced above.
|
||||
We are interested in the modes at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point of the hexagonal lattice, which has the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
point symmetry.
|
||||
The six irreducible representations (irreps) of the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
group are known and are available in the literature in their explicit forms.
|
||||
In order to find and classify the modes, we need to find a decomposition
|
||||
of the lattice mode representation
|
||||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}=\Gamma^{\mathrm{equiv.}}\otimes\Gamma_{\mathrm{vec.}}$
|
||||
\end_inset
|
||||
|
||||
into the irreps of
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
The equivalence representation
|
||||
\begin_inset Formula $\Gamma^{\mathrm{equiv.}}$
|
||||
\end_inset
|
||||
|
||||
is the
|
||||
\begin_inset Formula $E'$
|
||||
\end_inset
|
||||
|
||||
representation as can be deduced from
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (11.19)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
, eq.
|
||||
(11.19) and the character table for
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
||||
\begin_inset Formula $\Gamma_{\mathrm{vec.}}$
|
||||
\end_inset
|
||||
|
||||
operates on a space spanned by the VSWFs around each nanoparticle in the
|
||||
unit cell (the effects of point group operations on VSWFs are described
|
||||
in
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
key "schulz_point-group_1999"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
).
|
||||
This space can be then decomposed into invariant subspaces of the
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
using the projectors
|
||||
\begin_inset Formula $\hat{P}_{ab}^{\left(\Gamma\right)}$
|
||||
\end_inset
|
||||
|
||||
defined by
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (4.28)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
This way, we obtain a symmetry adapted basis
|
||||
\begin_inset Formula $\left\{ \vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}\right\} $
|
||||
\end_inset
|
||||
|
||||
as linear combinations of VSWFs
|
||||
\begin_inset Formula $\vswfs lm{p,t}$
|
||||
\end_inset
|
||||
|
||||
around the constituting nanoparticles (labeled
|
||||
\begin_inset Formula $p$
|
||||
\end_inset
|
||||
|
||||
),
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\vect b_{\Gamma,r,i}^{\mathrm{s.a.b.}}=\sum_{l,m,p,t}U_{\Gamma,r,i}^{p,t,l,m}\vswfs lm{p,t},
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
stands for one of the six different irreps of
|
||||
\begin_inset Formula $D_{3h}$
|
||||
\end_inset
|
||||
|
||||
,
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
labels the different realisations of the same irrep, and the last index
|
||||
|
||||
\begin_inset Formula $i$
|
||||
\end_inset
|
||||
|
||||
going from 1 to
|
||||
\begin_inset Formula $d_{\Gamma}$
|
||||
\end_inset
|
||||
|
||||
(the dimensionality of
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
) labels the different partners of the same given irrep.
|
||||
The number of how many times is each irrep contained in
|
||||
\begin_inset Formula $\Gamma_{\mathrm{lat.mod.}}$
|
||||
\end_inset
|
||||
|
||||
(i.e.
|
||||
the range of index
|
||||
\begin_inset Formula $r$
|
||||
\end_inset
|
||||
|
||||
for given
|
||||
\begin_inset Formula $\Gamma$
|
||||
\end_inset
|
||||
|
||||
) depends on the multipole degree cutoff
|
||||
\begin_inset Formula $l_{\mathrm{max}}$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
||||
\lang english
|
||||
Each mode at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point shall lie in the irreducible spaces of only one of the six possible
|
||||
irreps and it can be shown via
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "eq. (2.51)"
|
||||
key "dresselhaus_group_2008"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
that, at the
|
||||
\begin_inset Formula $\Kp$
|
||||
\end_inset
|
||||
|
||||
-point, the matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
defined above takes a block-diagonal form in the symmetry-adapted basis,
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
M\left(\omega,\vect K\right)_{\Gamma,r,i;\Gamma',r',j}^{\mathrm{s.a.b.}}=\frac{\delta_{\Gamma\Gamma'}\delta_{ij}}{d_{\Gamma}}\sum_{q}M\left(\omega,\vect K\right)_{\Gamma,r,q;\Gamma',r',q}^{\mathrm{s.a.b.}}.
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This enables us to decompose the matrix according to the irreps and to solve
|
||||
the singular value problem in each irrep separately, as done in Fig.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "smfig:dispersions"
|
||||
|
||||
\end_inset
|
||||
|
||||
(a).
|
||||
\end_layout
|
||||
|
||||
\end_body
|
||||
\end_document
|
Loading…
Reference in New Issue