Infinite systems WIP (how to numerical solutions)
Former-commit-id: dd3118e392b58eb9ae2260581e93028561571245
This commit is contained in:
parent
d5b6f8f5d4
commit
f167360c1e
|
@ -802,6 +802,17 @@ literal "true"
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset include
|
||||
LatexCommand include
|
||||
filename "symmetries.lyx"
|
||||
literal "true"
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -290,8 +290,8 @@ outgoing
|
|||
, respectively, defined as follows:
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),
|
||||
\vswfrtlm1lm\left(k\vect r\right) & =j_{l}\left(kr\right)\vsh1lm\left(\uvec r\right),\\
|
||||
\vswfrtlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krj_{l}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(kr\right)}{kr}\vsh3lm\left(\uvec r\right),
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -299,8 +299,8 @@ outgoing
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\\
|
||||
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh 3lm\left(\uvec r\right),\\
|
||||
\vswfouttlm1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh1lm\left(\uvec r\right),\\
|
||||
\vswfouttlm2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(kr\right)\right)}{\ud\left(kr\right)}\vsh2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(kr\right)}{kr}\vsh3lm\left(\uvec r\right),\\
|
||||
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,
|
||||
\end{align*}
|
||||
|
||||
|
@ -326,9 +326,9 @@ vector spherical harmonics
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{align*}
|
||||
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
|
||||
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
|
||||
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
|
||||
\vsh1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\\
|
||||
\vsh2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\\
|
||||
\vsh3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).
|
||||
\end{align*}
|
||||
|
||||
\end_inset
|
||||
|
@ -452,7 +452,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
inside a ball
|
||||
\begin_inset Formula $\openball 0{R^{>}}$
|
||||
\begin_inset Formula $\openball0{R^{>}}$
|
||||
\end_inset
|
||||
|
||||
with radius
|
||||
|
@ -470,7 +470,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
to have a complete basis of the solutions in the volume
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -496,7 +496,7 @@ The single-particle scattering problem at frequency
|
|||
\end_inset
|
||||
|
||||
and let the whole volume
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
be filled with a homogeneous isotropic medium with wave number
|
||||
|
@ -532,7 +532,7 @@ If there was no scatterer and
|
|||
\end_inset
|
||||
|
||||
due to sources outside
|
||||
\begin_inset Formula $\openball 0R$
|
||||
\begin_inset Formula $\openball0R$
|
||||
\end_inset
|
||||
|
||||
would remain.
|
||||
|
@ -793,7 +793,7 @@ literal "true"
|
|||
|
||||
.
|
||||
Let the field in
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
have expansion as in
|
||||
|
@ -812,7 +812,7 @@ noprefix "false"
|
|||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $\openball 0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\begin_inset Formula $\openball0{R^{>}}\backslash B_{0}\left(R\right)$
|
||||
\end_inset
|
||||
|
||||
via by electromagnetic radiation is
|
||||
|
@ -864,8 +864,8 @@ In many scattering problems considered in practice, the driving field is
|
|||
with expansion coefficients
|
||||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD1lm\left(\uvec k\right),\nonumber \\
|
||||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -1251,7 +1251,17 @@ noprefix "false"
|
|||
|
||||
\end_inset
|
||||
|
||||
can then be solved using standard numerical linear algebra methods.
|
||||
can then be solved using standard numerical linear algebra methods (typically,
|
||||
by LU factorisation of the
|
||||
\begin_inset Formula $\left(I-T\trops\right)$
|
||||
\end_inset
|
||||
|
||||
matrix at a given frequency, and then solving with Gauss elimination for
|
||||
as many different incident
|
||||
\begin_inset Formula $\rcoeffinc$
|
||||
\end_inset
|
||||
|
||||
vectors as needed).
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
|
|
|
@ -324,9 +324,9 @@ noprefix "false"
|
|||
As in the case of a finite system, eq.
|
||||
can be written in a shorter block-matrix form,
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right)
|
||||
\]
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
|
@ -343,8 +343,196 @@ noprefix "false"
|
|||
|
||||
can be used to calculate electromagnetic response of the structure to external
|
||||
quasiperiodic driving field – most notably a plane wave.
|
||||
However, if one sets the right the right-hand side to zero, it can also
|
||||
be used to find electromagnetic lattice modes
|
||||
However, the non-trivial solutions of the equation with right hand side
|
||||
(i.e.
|
||||
the external driving) set to zero,
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\left(I-WT\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
||||
describes the
|
||||
\emph on
|
||||
lattice modes.
|
||||
|
||||
\emph default
|
||||
Non-trivial solutions to
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
exist if the matrix on the left-hand side
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-W\left(\omega,\vect k\right)T\left(\omega\right)\right)$
|
||||
\end_inset
|
||||
|
||||
is singular – this condition gives the
|
||||
\emph on
|
||||
dispersion relation
|
||||
\emph default
|
||||
for the periodic structure.
|
||||
Note that in realistic (lossy) systems, at least one of the pair
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
will acquire complex values.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Numerical solution
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
In practice, equation
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem unit cell block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
is solved in the same way as eq.
|
||||
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
in the multipole degree truncated form.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The lattice mode problem
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:lattice mode equation"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
is (after multipole degree truncation) solved by finding
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
for which the matrix
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
has a zero singular value.
|
||||
A naïve approach to do that is to sample a volume with a grid in the
|
||||
\begin_inset Formula $\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
space, performing a singular value decomposition of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
at each point and finding where the lowest singular value of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is close enough to zero.
|
||||
However, this approach is quite expensive, for
|
||||
\begin_inset Formula $W\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
has to be evaluated for each
|
||||
\begin_inset Formula $\omega,\vect k$
|
||||
\end_inset
|
||||
|
||||
pair separately (unlike the original finite case
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand eqref
|
||||
reference "eq:Multiple-scattering problem block form"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
translation operator
|
||||
\begin_inset Formula $\trops$
|
||||
\end_inset
|
||||
|
||||
, which, for a given geometry, depends only on frequency).
|
||||
Therefore, a much more efficient approach to determine the photonic bands
|
||||
is to sample the
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
-space (a whole Brillouin zone or its part) and for each fixed
|
||||
\begin_inset Formula $\vect k$
|
||||
\end_inset
|
||||
|
||||
to find a corresponding frequency
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
with zero singular value of
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
using a minimisation algorithm (two- or one-dimensional, depending on whether
|
||||
one needs the exact complex-valued
|
||||
\begin_inset Formula $\omega$
|
||||
\end_inset
|
||||
|
||||
or whether the its real-valued approximation is satisfactory).
|
||||
Typically, a good initial guess for
|
||||
\begin_inset Formula $\omega\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
is obtained from the empty lattice approximation,
|
||||
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
|
||||
\end_inset
|
||||
|
||||
(modulo lattice points; TODO write this a clean way).
|
||||
A somehow challenging step is to distinguish the different bands that can
|
||||
all be very close to the empty lattice approximation, especially if the
|
||||
particles in the systems are small.
|
||||
In high-symmetry points of the Brilloin zone, this can be solved by factorising
|
||||
|
||||
\begin_inset Formula $M\left(\omega,\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
into irreducible representations
|
||||
\begin_inset Formula $\Gamma_{i}$
|
||||
\end_inset
|
||||
|
||||
and performing the minimisation in each irrep separately, cf.
|
||||
Section
|
||||
\begin_inset CommandInset ref
|
||||
LatexCommand ref
|
||||
reference "sec:Symmetries"
|
||||
plural "false"
|
||||
caps "false"
|
||||
noprefix "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, and using the different
|
||||
\begin_inset Formula $\omega_{\Gamma_{i}}\left(\vect k\right)$
|
||||
\end_inset
|
||||
|
||||
to obtain the initial guesses for the nearby points
|
||||
\begin_inset Formula $\vect k+\delta\vect k$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
|
@ -617,8 +805,8 @@ reference "eq:W sum in reciprocal space"
|
|||
\begin_inset Formula
|
||||
\begin{eqnarray}
|
||||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||||
\end{eqnarray}
|
||||
|
||||
\end_inset
|
||||
|
@ -656,7 +844,7 @@ CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
|
|||
|
||||
\begin_inset Formula
|
||||
\begin{equation}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
|
||||
\end{equation}
|
||||
|
||||
\end_inset
|
||||
|
|
Loading…
Reference in New Issue