New CLI argument processing
Former-commit-id: d8fba975ccf08a11e0a4515e5af92edb7856f643
This commit is contained in:
parent
1dcebe4fee
commit
f1f2c821df
|
@ -1,45 +1,34 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import math
|
||||
from qpms.argproc import ArgParser
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
|
||||
ap = ArgParser(['single_particle', 'single_omega', 'single_lMax'])
|
||||
ap.add_argument("-p", "--period", type=float, required=True, help='square lattice period')
|
||||
ap.add_argument("--Nx", type=int, required=True, help='Array size x')
|
||||
ap.add_argument("--Ny", type=int, required=True, help='Array size y')
|
||||
ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV')
|
||||
ap.add_argument("-m", "--material", help='particle material (Au, Ag for Lorentz-Drue or number for constant refractive index)', default='Au', required=True)
|
||||
ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)')
|
||||
ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical')
|
||||
ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX'))
|
||||
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
|
||||
ap.add_argument("--rank-tol", type=float, required=False)
|
||||
ap.add_argument("-n", "--refractive-index", type=float, default=1.52, help='background medium refractive index')
|
||||
ap.add_argument("-L", "--lMax", type=int, required=True, default=3, help='multipole degree cutoff')
|
||||
ap.add_argument("--lMax-extend", type=int, required=False, default=6, help='multipole degree cutoff for T-matrix calculation (cylindrical particles only')
|
||||
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
|
||||
ap.add_argument("-N", type=int, default="151", help="Number of angles")
|
||||
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
|
||||
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
|
||||
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
|
||||
|
||||
|
||||
a=ap.parse_args()
|
||||
|
||||
if a.material in ['Ag', 'Au']:
|
||||
pass
|
||||
else:
|
||||
try: lemat = float(a.material)
|
||||
except ValueError:
|
||||
try: lemat = complex(a.material)
|
||||
except ValueError:
|
||||
raise ValueError("--material must be either one of 'Ag', 'Au' or a number")
|
||||
a.material = lemat
|
||||
import logging
|
||||
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
|
||||
|
||||
|
||||
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
||||
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e6)
|
||||
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
||||
defaultprefix = "%s_p%gnm_%dx%d_m%s_n%g_angles(%g_%g)_Ey_f%geV_L%d_cn%d" % (
|
||||
particlestr, a.period*1e9, a.Nx, a.Ny, str(a.material), a.refractive_index, a.kx_lim[0], a.kx_lim[1], a.eV, a.lMax, a.N)
|
||||
print("Dafault file prefix: %s" % defaultprefix, flush=True)
|
||||
logging.info("Dafault file prefix: %s" % defaultprefix)
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
@ -64,28 +53,17 @@ orig_y = (np.arange(a.Ny/2) + (0 if (a.Ny % 2) else .5)) * py
|
|||
|
||||
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
|
||||
|
||||
medium = EpsMu(a.refractive_index**2)
|
||||
|
||||
if a.material in lorentz_drude:
|
||||
emg = EpsMuGenerator(lorentz_drude[a.material])
|
||||
else: # constant refractive index
|
||||
emg = EpsMuGenerator(EpsMu(a.material**2))
|
||||
|
||||
if a.height is None:
|
||||
tmgen = TMatrixGenerator.sphere(medium, emg, a.radius)
|
||||
else:
|
||||
tmgen = TMatrixGenerator.cylinder(medium, emg, a.radius, a.height, lMax_extend=a.lMax_extend)
|
||||
|
||||
omega = a.eV * eh
|
||||
omega = ap.omega
|
||||
|
||||
bspec = BaseSpec(lMax = a.lMax)
|
||||
Tmatrix = tmgen(bspec, omega)
|
||||
Tmatrix = ap.tmgen(bspec, ap.omega)
|
||||
particles= [Particle(orig_xy[i], Tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
|
||||
|
||||
sym = FinitePointGroup(point_group_info['D2h'])
|
||||
ss = ScatteringSystem(particles, sym)
|
||||
|
||||
wavenumber = medium.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
|
||||
wavenumber = ap.background_epsmu.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
|
||||
|
||||
sinalpha_list = np.linspace(a.kx_lim[0],a.kx_lim[1],a.N)
|
||||
|
||||
|
@ -101,9 +79,16 @@ k_cart_list *= wavenumber
|
|||
σ_ext_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
|
||||
σ_scat_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
|
||||
|
||||
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
|
||||
|
||||
for iri in range(ss.nirreps):
|
||||
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
|
||||
LU = None # to trigger garbage collection before the next call
|
||||
translation_matrix = None
|
||||
LU = ss.scatter_solver(wavenumber,iri)
|
||||
logging.info("LU solver created")
|
||||
translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
|
||||
logging.info("auxillary translation matrix created")
|
||||
|
||||
for j in range(a.N):
|
||||
# the following two could be calculated only once, but probably not a big deal
|
||||
|
@ -115,6 +100,11 @@ for iri in range(ss.nirreps):
|
|||
fi = LU(Tãi)
|
||||
σ_ext_list_ir[j, iri] = -np.vdot(ãi, fi).real/wavenumber**2
|
||||
σ_scat_list_ir[j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2
|
||||
if a.save_gradually:
|
||||
iriout = outfile_tmp + ".%d" % iri
|
||||
np.savez(iriout, iri=iri, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list,
|
||||
omega=omega, wavenumber=wavenumber, σ_ext_list_ir=σ_ext_list_ir[:,iri], σ_scat_list_ir=σ_scat_list_ir[:,iri])
|
||||
logging.info("partial results saved to %s"%iriout)
|
||||
|
||||
σ_abs_list_ir = σ_ext_list_ir - σ_scat_list_ir
|
||||
σ_abs= np.sum(σ_abs_list_ir, axis=-1)
|
||||
|
@ -123,14 +113,17 @@ for iri in range(ss.nirreps):
|
|||
|
||||
|
||||
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
||||
np.savez(outfile, meta=vars(a), k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat,
|
||||
np.savez(outfile, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat,
|
||||
σ_ext_ir=σ_ext_list_ir,σ_abs_ir=σ_abs_list_ir,σ_scat_ir=σ_scat_list_ir, omega=omega, wavenumber=wavenumber
|
||||
)
|
||||
print("Saved to %s" % outfile)
|
||||
logging.info("Saved to %s" % outfile)
|
||||
|
||||
|
||||
if a.plot or (a.plot_out is not None):
|
||||
import matplotlib
|
||||
matplotlib.use('pdf')
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
fig = plt.figure()
|
||||
ax = fig.add_subplot(111)
|
||||
ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$')
|
||||
|
|
|
@ -0,0 +1,102 @@
|
|||
'''
|
||||
Common snippets for argument processing in command line scripts; legacy scripts use scripts_common.py instead.
|
||||
'''
|
||||
|
||||
import argparse
|
||||
|
||||
class ArgParser:
|
||||
''' Common argument parsing engine for QPMS python CLI scripts. '''
|
||||
atomic_arguments = {
|
||||
'sqlat_period': lambda ap: ap.add_argument("-p", "--period", type=float, required=True, help='square lattice period'),
|
||||
'rectlat_Nx': lambda ap: ap.add_argument("--Nx", type=int, required=True, help='array size x'),
|
||||
'rectlat_Ny': lambda ap: ap.add_argument("--Ny", type=int, required=True, help='array size y'),
|
||||
'single_frequency_eV': lambda ap: ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV'),
|
||||
'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', default='Au', required=True),
|
||||
'single_radius': lambda ap: ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)'),
|
||||
'single_height': lambda ap: ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical'),
|
||||
'single_kvec2': lambda ap: ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX')),
|
||||
'kpi': lambda ap: ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)"),
|
||||
'bg_refractive_index': lambda ap: ap.add_argument("-n", "--refractive-index", type=float, default=1.52, help='background medium refractive index'),
|
||||
'single_lMax': lambda ap: ap.add_argument("-L", "--lMax", type=int, required=True, default=3, help='multipole degree cutoff'),
|
||||
'single_lMax_extend': lambda ap: ap.add_argument("--lMax-extend", type=int, required=False, default=6, help='multipole degree cutoff for T-matrix calculation (cylindrical particles only'),
|
||||
'outfile': lambda ap: ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)'),
|
||||
'plot_out': lambda ap: ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)"),
|
||||
'plot_do': lambda ap: ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path"),
|
||||
}
|
||||
|
||||
feature_sets_available = { # name : (description, dependencies, atoms not in other dependencies, methods called after parsing)
|
||||
'background': ("Background medium definition (currently only constant epsilon supported)", (), ('bg_refractive_index',), ('_eval_background_epsmu',)),
|
||||
'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',)),
|
||||
'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), ()),
|
||||
'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',)),
|
||||
}
|
||||
|
||||
|
||||
def __init__(self, features=[]):
|
||||
self.ap = argparse.ArgumentParser()
|
||||
self.features_enabled = set()
|
||||
self.call_at_parse_list = []
|
||||
self.parsed = False
|
||||
for feat in features:
|
||||
self.add_feature(feat)
|
||||
|
||||
def add_feature(self, feat):
|
||||
if feat not in self.features_enabled:
|
||||
if feat not in ArgParser.feature_sets_available:
|
||||
raise ValueError("Unknown ArgParser feature: %s", feat)
|
||||
#resolve dependencies
|
||||
_, deps, atoms, atparse = ArgParser.feature_sets_available[feat]
|
||||
for dep in deps:
|
||||
self.add_feature(dep)
|
||||
for atom in atoms: # maybe check whether that atom has already been added sometimes in the future?
|
||||
ArgParser.atomic_arguments[atom](self.ap)
|
||||
for methodname in atparse:
|
||||
self.call_at_parse_list.append(methodname)
|
||||
self.features_enabled.add(feat)
|
||||
|
||||
def add_argument(self, *args, **kwargs):
|
||||
'''Add a custom argument directly to the standard library ArgParser object'''
|
||||
self.ap.add_argument(*args, **kwargs)
|
||||
|
||||
def parse_args(self, process_data = True, *args, **kwargs):
|
||||
self.args = self.ap.parse_args(*args, **kwargs)
|
||||
if process_data:
|
||||
for method in self.call_at_parse_list:
|
||||
getattr(self, method)()
|
||||
return self.args
|
||||
|
||||
def __getattr__(self, name):
|
||||
return getattr(self.args, name)
|
||||
|
||||
|
||||
# Methods to initialise the related data structures:
|
||||
|
||||
def _eval_background_epsmu(self): # feature: background
|
||||
from .cymaterials import EpsMu
|
||||
self.background_epsmu = EpsMu(self.args.refractive_index**2)
|
||||
|
||||
def _eval_single_tmgen(self): # feature: single_particle
|
||||
a = self.args
|
||||
from .cymaterials import EpsMuGenerator, lorentz_drude
|
||||
from .cytmatrices import TMatrixGenerator
|
||||
if a.material in lorentz_drude.keys():
|
||||
self.foreground_emg = EpsMuGenerator(lorentz_drude[a.material])
|
||||
else:
|
||||
try: lemat = float(a.material)
|
||||
except ValueError:
|
||||
try: lemat = complex(a.material)
|
||||
except ValueError as ve:
|
||||
raise ValueError("--material must be either a label such as 'Ag', 'Au', or a number") from ve
|
||||
a.material = lemat
|
||||
self.foreground_emg = EpsMuGenerator(EpsMu(a.material**2))
|
||||
|
||||
if a.height is None:
|
||||
self.tmgen = TMatrixGenerator.sphere(self.background_epsmu, self.foreground_emg, a.radius)
|
||||
else:
|
||||
self.tmgen = TMatrixGenerator.cylinder(self.background_epsmu, self.foreground_emg, a.radius, a.height, lMax_extend = a.lMax_extend)
|
||||
|
||||
def _eval_single_omega(self): # feature: single_omega
|
||||
from .constants import eV, hbar
|
||||
self.omega = self.args.eV * eV / hbar
|
||||
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
# unit conversions, mostly for standalone usage
|
||||
# TODO avoid importing the "heavy" qpms parts
|
||||
from scipy.constants import epsilon_0 as ε_0, c, pi as π, e as eV, hbar as ℏ, mu_0 as μ_0
|
||||
from scipy.constants import epsilon_0 as ε_0, c, pi as π, e as eV, hbar, hbar as ℏ, mu_0 as μ_0
|
||||
pi = π
|
||||
μm = 1e-6
|
||||
nm = 1e-9
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
'''
|
||||
Mostly legacy code; new scripts use mostly argproc.py
|
||||
'''
|
||||
import warnings
|
||||
import argparse
|
||||
#import sys # for debugging purpose, TODO remove in production
|
||||
|
|
Loading…
Reference in New Issue