Typography and minor stuff
Former-commit-id: 2dcce31b7ef340e9068b8ca078521ae5a5e4911f
This commit is contained in:
parent
3ce28b21af
commit
f65efdfe73
|
@ -97,52 +97,6 @@
|
||||||
Finite systems
|
Finite systems
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Itemize
|
|
||||||
motivation (classes of problems that this can solve: response to external
|
|
||||||
radiation, resonances, ...)
|
|
||||||
\begin_inset Separator latexpar
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_deeper
|
|
||||||
\begin_layout Itemize
|
|
||||||
theory
|
|
||||||
\begin_inset Separator latexpar
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_deeper
|
|
||||||
\begin_layout Itemize
|
|
||||||
T-matrix definition, basics
|
|
||||||
\begin_inset Separator latexpar
|
|
||||||
\end_inset
|
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_deeper
|
|
||||||
\begin_layout Itemize
|
|
||||||
How to get it?
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_deeper
|
|
||||||
\begin_layout Itemize
|
|
||||||
translation operators (TODO think about how explicit this should be, but
|
|
||||||
I guess it might be useful to write them to write them explicitly (but
|
|
||||||
in the shortest possible form) in the normalisation used in my program)
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\begin_layout Itemize
|
|
||||||
employing point group symmetries and decomposing the problem to decrease
|
|
||||||
the computational complexity (maybe separately)
|
|
||||||
\end_layout
|
|
||||||
|
|
||||||
\end_deeper
|
|
||||||
\end_deeper
|
|
||||||
\begin_layout Subsection
|
\begin_layout Subsection
|
||||||
Motivation/intro
|
Motivation/intro
|
||||||
\end_layout
|
\end_layout
|
||||||
|
@ -660,9 +614,16 @@ TOOD H-field expansion here?
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
-matrices of particles with certain simple geometries (most famously spherical)
|
-matrices of particles with certain simple geometries (most famously spherical)
|
||||||
can be obtained analytically [Kristensson 2016, Mie], but in general one
|
can be obtained analytically
|
||||||
can find them numerically by simulating scattering of a regular spherical
|
\begin_inset CommandInset citation
|
||||||
wave
|
LatexCommand cite
|
||||||
|
key "kristensson_scattering_2016,mie_beitrage_1908"
|
||||||
|
literal "false"
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, but in general one can find them numerically by simulating scattering
|
||||||
|
of a regular spherical wave
|
||||||
\begin_inset Formula $\vswfouttlm{\tau}lm$
|
\begin_inset Formula $\vswfouttlm{\tau}lm$
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
|
@ -7,7 +7,7 @@
|
||||||
\textclass article
|
\textclass article
|
||||||
\use_default_options true
|
\use_default_options true
|
||||||
\maintain_unincluded_children false
|
\maintain_unincluded_children false
|
||||||
\language finnish
|
\language english
|
||||||
\language_package default
|
\language_package default
|
||||||
\inputencoding utf8
|
\inputencoding utf8
|
||||||
\fontencoding auto
|
\fontencoding auto
|
||||||
|
@ -509,9 +509,10 @@ noprefix "false"
|
||||||
\lang english
|
\lang english
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align}
|
\begin{multline}
|
||||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
\vect E\left(\omega,R_{g}\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right.+\\
|
||||||
\end{align}
|
+\left.\outcoeffptlm p{\tau}lmD_{m',\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-R_{g}\vect r_{p}\right)\right)\right).\label{eq:rotated E field expansion around outside origin}
|
||||||
|
\end{multline}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
@ -688,8 +689,10 @@ status open
|
||||||
|
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)+\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\label{eq:rotated E field expansion around outside origin-1}\\
|
\vect E\left(\omega,R_{g}\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{\pi_{g}(p)}\right)\right)\right.+\label{eq:rotated E field expansion around outside origin-1}\\
|
||||||
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
|
& \quad+\left.\outcoeffptlm p{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right)\\
|
||||||
|
& =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\sum_{m'=-l}^{l}\left(\rcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfrtlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right.+\\
|
||||||
|
& \quad+\left.\outcoeffptlm{\pi_{g}^{-1}(p)}{\tau}lmD_{m,\mu'}^{\tau l}\left(g\right)\vswfouttlm{\tau}l{m'}\left(k\left(\vect r-\vect r_{p}\right)\right)\right).
|
||||||
\end{align}
|
\end{align}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue