Adding some formulae to the text

Former-commit-id: c244a6681365147a17017dbb1f0f75192d99c351
This commit is contained in:
Marek Nečada 2016-06-30 16:02:31 +03:00
parent 5bfd515d4e
commit fe0ccb92b8
1 changed files with 548 additions and 6 deletions

View File

@ -79,8 +79,21 @@
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\end_layout
\begin_layout Title
Electromagnetic multiple scattering, spherical waves and shit
Electromagnetic multiple scattering, spherical waves and ****
\end_layout
\begin_layout Author
@ -95,33 +108,562 @@ Zillion conventions for spherical vector waves
Legendre polynomials and spherical harmonics: messy from the very beginning
\end_layout
\begin_layout Subsection
Kristensson
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
P_{l}^{-m}=\left(-1\right)^{m}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0
\]
\end_inset
Kristensson uses the Condon-Shortley phase, so (sect.
[K]D.2)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
Y_{lm}\left(\hat{\vect r}\right)=\left(-1\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}P_{l}^{m}\left(\cos\theta\right)e^{im\phi}
\]
\end_inset
\begin_inset Formula
\[
Y_{lm}^{\dagger}\left(\hat{\vect r}\right)=Y_{lm}^{*}\left(\hat{\vect r}\right)
\]
\end_inset
\begin_inset Formula
\[
Y_{l,-m}\left(\hat{\vect r}\right)=\left(-1\right)^{m}Y_{lm}^{\dagger}\left(\hat{\vect r}\right)
\]
\end_inset
\end_layout
\begin_layout Standard
Orthonormality:
\begin_inset Formula
\[
\int Y_{lm}\left(\hat{\vect r}\right)Y_{l'm'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{ll'}\delta_{mm'}
\]
\end_inset
\end_layout
\begin_layout Section
Pi and tau (?), spherical Bessel functions
Pi and tau
\end_layout
\begin_layout Subsection
Taylor
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\tilde{\pi}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
\tilde{\tau}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Section
Vector spherical harmonics (?)
\end_layout
\begin_layout Section
All the conventions
\begin_layout Subsection
Kristensson
\end_layout
\begin_layout Standard
Original formulation, sect.
[K]D.3.3
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\vect A_{1lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{1}{\sin\theta}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\\
\vect A_{2lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\\
\vect A_{3lm}\left(\hat{\vect r}\right) & = & \hat{\vect r}Y_{lm}\left(\hat{\vect r}\right)
\end{eqnarray*}
\end_inset
Normalisation:
\begin_inset Formula
\[
\int\vect A_{n}\left(\hat{\vect r}\right)\cdot\vect A_{n'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{nn'}
\]
\end_inset
Here
\begin_inset Formula $\mbox{ }^{\dagger}$
\end_inset
means just complex conjugate, apparently (see footnote on p.
89).
\end_layout
\begin_layout Section
Spherical Bessel functions
\begin_inset CommandInset label
LatexCommand label
name "sec:Spherical-Bessel-functions"
\end_inset
\end_layout
\begin_layout Standard
The radial dependence of spherical vector waves is given by the spherical
Bessel functions and their first derivatives.
Commonly, the following notation is adopted
\begin_inset Formula
\begin{eqnarray*}
z_{n}^{(1)}(x) & = & j_{n}(x),\\
z_{n}^{(2)}(x) & = & y_{n}(x),\\
z_{n}^{(3)}(x) & = & h_{n}^{(1)}(x)=j_{n}(x)+iy_{n}(x),\\
z_{n}^{(4)}(x) & = & h_{n}^{(2)}(x)=j_{n}(x)-iy_{n}(x).
\end{eqnarray*}
\end_inset
Here,
\begin_inset Formula $j_{n}$
\end_inset
is the spherical Bessel function of first kind (regular),
\begin_inset Formula $y_{j}$
\end_inset
is the spherical Bessel function of second kind (singular), and
\begin_inset Formula $h_{n}^{(1)},h_{n}^{(2)}$
\end_inset
are the Hankel functions a.k.a.
spherical Bessel functions of third kind.
In spherical vector waves,
\begin_inset Formula $j_{n}$
\end_inset
corresponds to regular waves,
\begin_inset Formula $h^{(1)}$
\end_inset
corresponds (by the usual convention) to outgoing waves, and
\begin_inset Formula $h^{(2)}$
\end_inset
corresponds to incoming waves.
To describe scattering, we need two sets of waves with two different types
of spherical Bessel functions
\begin_inset Formula $z_{n}^{(J)}$
\end_inset
.
Most common choice is
\begin_inset Formula $J=1,3$
\end_inset
, because if we decompose the field into spherical waves centered at
\begin_inset Formula $\vect r_{0}$
\end_inset
, the field produced by other sources (e.g.
spherical waves from other scatterers or a plane wave) is always regular
at
\begin_inset Formula $\vect r_{0}$
\end_inset
.
Second choice which makes a bit of sense is
\begin_inset Formula $J=3,4$
\end_inset
as it leads to a nice expression for the energy transport.
\end_layout
\begin_layout Section
Spherical vector waves
\end_layout
\begin_layout Standard
TODO
\begin_inset Formula $M,N,\psi,\chi,\widetilde{M},\widetilde{N},u,v,w,\dots$
\end_inset
, sine/cosine convention (B&H), ...
\end_layout
\begin_layout Standard
There are two mutually orthogonal types of divergence-free (everywhere except
in the origin for singular waves) spherical vector waves, which I call
electric and magnetic, given by the type of multipole source to which they
correspond.
This is another distinction than the regular/singular/ingoing/outgoing
waves given by the type of the radial dependence (cf.
section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Spherical-Bessel-functions"
\end_inset
).
Oscillating electric current in a tiny rod parallel to its axis will generate
electric dipole waves (net dipole moment of magnetic current is zero) moment
, whereas oscillating electric current in a tiny circular loop will generate
magnetic dipole waves (net dipole moment of electric current is zero).
\end_layout
\begin_layout Standard
In the usual cases we encounter, the part described by the magnetic waves
is pretty small.
\end_layout
\begin_layout Subsection
Taylor
\end_layout
\begin_layout Standard
Definition [T](2.40);
\begin_inset Formula $\widetilde{\vect N}_{mn}^{(j)},\widetilde{\vect M}_{mn}^{(j)}$
\end_inset
are the electric and magnetic waves, respectively:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\widetilde{\vect N}_{mn}^{(j)} & = & \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
& & +\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)\\
\widetilde{\vect M}_{mn}^{(j)} & = & \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsection
Kristensson
\end_layout
\begin_layout Standard
Definition [K](2.4.6);
\begin_inset Formula $\vect u_{\tau lm},\vect v_{\tau lm},\vect w_{\tau lm}$
\end_inset
are the waves with
\begin_inset Formula $j=3,1,4$
\end_inset
respectively, i.e.
outgoing, regular and incoming waves.
The first index distinguishes between the electric (
\begin_inset Formula $\tau=2$
\end_inset
) and magnetic (
\begin_inset Formula $\tau=1$
\end_inset
).
Kristensson uses a multiindex
\begin_inset Formula $n\equiv(\tau,l,m)$
\end_inset
to simlify the notation.
\begin_inset Formula
\begin{eqnarray*}
\left(\vect{u/v/w}\right)_{2lm} & = & \frac{1}{kr}\frac{\ud\left(kr\, z_{l}^{(j)}\left(kr\right)\right)}{\ud\, kr}\vect A_{2lm}\left(\hat{\vect r}\right)+\sqrt{l\left(l+1\right)}\frac{z_{l}^{(j)}(kr)}{kr}\vect A_{3lm}\left(\hat{\vect r}\right)\\
\left(\vect{u/v/w}\right)_{1lm} & = & z_{l}^{(j)}\left(kr\right)\vect A_{1lm}\left(\hat{\vect r}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsection
Relation between Kristensson and Taylor
\begin_inset CommandInset label
LatexCommand label
name "sub:Kristensson-v-Taylor"
\end_inset
\end_layout
\begin_layout Standard
Kristensson's and Taylor's VSWFs seem to differ only by an
\begin_inset Formula $l$
\end_inset
-dependent normalization factor, and notation of course (n.b.
the inverse index order)
\begin_inset Formula
\begin{eqnarray*}
\left(\vect{u/v/w}\right)_{2lm} & = & \frac{\widetilde{\vect N}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
\left(\vect{u/v/w}\right)_{1lm} & = & \frac{\widetilde{\vect M}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Section
Plane wave expansion
\end_layout
\begin_layout Subsection
Taylor
\end_layout
\begin_layout Standard
\begin_inset Formula $x$
\end_inset
-polarised,
\begin_inset Formula $z$
\end_inset
-propagating plane wave,
\begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
\end_inset
(CHECK):
\begin_inset Formula
\begin{eqnarray*}
\vect E & = & -i\left(p_{mn}\widetilde{\vect N}_{mn}^{(1)}+q_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)\\
p_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\tau}_{mn}(1)\\
q_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\pi}_{mn}(1)
\end{eqnarray*}
\end_inset
while it can be shown that
\begin_inset Formula
\begin{eqnarray*}
\tilde{\pi}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
\tilde{\tau}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}-\delta_{m,-1}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subsection
Kristensson
\end_layout
\begin_layout Standard
\begin_inset Formula $x$
\end_inset
-polarised,
\begin_inset Formula $z$
\end_inset
-propagating plane wave,
\begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
\end_inset
(CHECK, ):
\begin_inset Formula
\[
\vect E=\sum_{n}a_{n}\vect v_{n}
\]
\end_inset
\begin_inset Formula
\begin{eqnarray*}
a_{1lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
a_{2lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Section
Radiated energy
\end_layout
\begin_layout Standard
In this section I summarize the formulae for power
\begin_inset Formula $P$
\end_inset
radiated from the system.
For an absorbing scatterer, this should be negative (n.b.
sign conventions can be sometimes confusing).
If the system is excited by a plane wave with intensity
\begin_inset Formula $E_{0}$
\end_inset
, this can be used to calculate the absorption cross section,
\begin_inset Formula
\[
\sigma_{\mathrm{abs}}=-\frac{P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
\]
\end_inset
\end_layout
\begin_layout Subsection
Kristensson
\begin_inset CommandInset label
LatexCommand label
name "sub:Radiated enenergy-Kristensson"
\end_inset
\end_layout
\begin_layout Standard
Sect.
[K]2.6.2; here this form of expansion is assumed:
\begin_inset Formula
\begin{equation}
\vect E\left(\vect r,\omega\right)=k\sqrt{\eta_{0}\eta}\sum_{n}\left(a_{n}\vect v_{n}\left(k\vect r\right)+f_{n}\vect u_{n}\left(k\vect r\right)\right).\label{eq:power-Kristensson-E}
\end{equation}
\end_inset
Here
\begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
\end_inset
is the wave impedance of free space and
\begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
\end_inset
is the relative wave impedance of the medium.
\end_layout
\begin_layout Standard
The radiated power is then (2.28):
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
\]
\end_inset
\end_layout
\begin_layout Subsection
Taylor
\end_layout
\begin_layout Standard
Here I derive the radiated power in Taylor's convention by applying the
relations from subsection
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Kristensson-v-Taylor"
\end_inset
to the Kristensson's formulae (sect.
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Radiated enenergy-Kristensson"
\end_inset
).
\end_layout
\begin_layout Standard
Assume the external field decomposed as (here I use tildes even for the
expansion coefficients in order to avoid confusion with the
\begin_inset Formula $a_{n}$
\end_inset
in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:power-Kristensson-E"
\end_inset
)
\begin_inset Formula
\[
\vect E\left(\vect r,\omega\right)=\sum_{mn}\left[-i\left(\tilde{p}_{mn}\vect{\widetilde{N}}_{mn}^{(1)}+\tilde{q}_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)+i\left(\tilde{a}_{mn}\widetilde{\vect N}_{mn}^{(3)}+\tilde{b}_{mn}\widetilde{\vect M}_{mn}^{(3)}\right)\right]
\]
\end_inset
(there is minus between the regular and outgoing part!).
The coefficients are related to those from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:power-Kristensson-E"
\end_inset
as
\begin_inset Formula
\[
\tilde{p}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{2nm},\quad\tilde{q}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{1nm},
\]
\end_inset
\begin_inset Formula
\[
\tilde{a}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{2nm},\quad\tilde{b}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{1nm}.
\]
\end_inset
The radiated power is then
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
\]
\end_inset
\end_layout
\begin_layout Section
Limit solutions
\end_layout
@ -183,11 +725,11 @@ Mie decomposition of Green's function for single nanoparticle
\end_layout
\begin_layout Chapter
Translation of spherical waves: shit gets insane
Translation of spherical waves: getting insane
\end_layout
\begin_layout Chapter
Multiple scattering: nice linear algebra born from all the shit
Multiple scattering: nice linear algebra born from all the mess
\end_layout
\begin_layout Standard