Notes on τ vs. σ

Former-commit-id: 23add1dc0a6d0190e8fd61dceb9e39f7237dd4c8
This commit is contained in:
Marek Nečada 2020-06-12 10:14:20 +03:00
parent e2584e3163
commit fec399d16b
1 changed files with 167 additions and 5 deletions

View File

@ -216,6 +216,18 @@ e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\ka
\end_inset \end_inset
This one should also be convention independent (similarly for
\begin_inset Formula $\mathcal{H}_{l}^{m}$
\end_inset
):
\begin_inset Formula
\[
\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right).
\]
\end_inset
\end_layout \end_layout
@ -245,11 +257,24 @@ G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\v
\end_inset \end_inset
\begin_inset Marginal
status open
\begin_layout Plain Layout
\begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$
\end_inset
in case wacky conventions.
\end_layout
\end_inset
Lattice GF [Linton (2.3)]: Lattice GF [Linton (2.3)]:
\begin_inset Formula \begin_inset Formula
\[ \begin{equation}
G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R} G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF}
\] \end{equation}
\end_inset \end_inset
@ -264,7 +289,15 @@ GF expansion and lattice sum definition
Let's define Let's define
\begin_inset Formula \begin_inset Formula
\[ \[
\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s-\vect R\right)\right)e^{i\vect k\cdot\vect R}. \sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R},
\]
\end_inset
and also its dual version
\begin_inset Formula
\[
\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}.
\] \]
\end_inset \end_inset
@ -287,11 +320,140 @@ Inspired by [Linton (4.1)]; assuming that
\begin_layout Standard \begin_layout Standard
\begin_inset Formula \begin_inset Formula
\[ \[
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right). G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)
\] \]
\end_inset \end_inset
and multiply with a dual SH + integrate
\begin_inset Formula
\begin{align}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\
& =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction}
\end{align}
\end_inset
The expansion coefficients
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
is then typically extracted by taking the limit
\begin_inset Formula $\left|\vect r\right|\to0$
\end_inset
.
\end_layout
\begin_layout Standard
The relation between
\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
and
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
can be obtained e.g.
from the addition theorem for scalar spherical wavefunctions [Linton (C.3)],
\begin_inset Formula
\[
\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|
\]
\end_inset
where for the zeroth degree and order one has [Linton (C.3)]
\begin_inset Formula
\[
S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)
\]
\end_inset
\begin_inset Marginal
status open
\begin_layout Plain Layout
In a totally convention-independent version probably looks like
\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$
\end_inset
, but the
\begin_inset Formula $Y_{0}^{0}$
\end_inset
will cancel with the expression for GF anyways, so no harm to the final
result.
\end_layout
\end_inset
From the lattice GF definition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Lattice GF"
plural "false"
caps "false"
noprefix "false"
\end_inset
\begin_inset Formula
\begin{align*}
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}
\end{align*}
\end_inset
and mutliplying with dual SH and integrating
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)
\end{align*}
\end_inset
and comparing with
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction"
plural "false"
caps "false"
noprefix "false"
\end_inset
we have
\begin_inset Formula
\[
\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right).
\]
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO maybe also define some
\begin_inset Formula $\tau'_{l}^{m}$
\end_inset
as expansion coefficients of GF into dual regular SSWFs.
\end_layout
\end_inset
\end_layout \end_layout