Compare commits
18 Commits
master
...
precise_po
Author | SHA1 | Date |
---|---|---|
Marek Nečada | 6cecad6d18 | |
Marek Nečada | 345352dbd5 | |
Marek Nečada | 1ea9d9cb47 | |
Marek Nečada | fa15871bd9 | |
Marek Nečada | 34e52a42cf | |
Marek Nečada | 706073315b | |
Marek Nečada | c0ec5389e0 | |
Troy D. Hanson & al | 6b5b773d0b | |
Marek Nečada | 57a1206dcc | |
Marek Nečada | 0c5a38371f | |
Marek Nečada | 5f77fd9386 | |
Marek Nečada | 8db97686e5 | |
Marek Nečada | d6b3951dc2 | |
Marek Nečada | b4ac597771 | |
Marek Nečada | 25d1eced26 | |
Marek Nečada | a4df0139b9 | |
Marek Nečada | 3f5aaacbf2 | |
Marek Nečada | 4ca003ec8b |
|
@ -1,4 +1,5 @@
|
|||
cmake_minimum_required(VERSION 3.0.2)
|
||||
set (CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH};${CMAKE_CURRENT_SOURCE_DIR}/cmake-scripts")
|
||||
include(CMakeAddFortranSubdirectory)
|
||||
include(version.cmake)
|
||||
include(GNUInstallDirs)
|
||||
|
|
|
@ -0,0 +1,22 @@
|
|||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
1. Redistributions of source code must retain the copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
3. The name of the author may not be used to endorse or promote products
|
||||
derived from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -0,0 +1,23 @@
|
|||
# Try to find the GMP librairies
|
||||
# GMP_FOUND - system has GMP lib
|
||||
# GMP_INCLUDE_DIR - the GMP include directory
|
||||
# GMP_LIBRARIES - Libraries needed to use GMP
|
||||
|
||||
# Copyright (c) 2006, Laurent Montel, <montel@kde.org>
|
||||
#
|
||||
# Redistribution and use is allowed according to the terms of the BSD license.
|
||||
# For details see the accompanying COPYING-CMAKE-SCRIPTS file.
|
||||
|
||||
|
||||
if (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
|
||||
# Already in cache, be silent
|
||||
set(GMP_FIND_QUIETLY TRUE)
|
||||
endif (GMP_INCLUDE_DIR AND GMP_LIBRARIES)
|
||||
|
||||
find_path(GMP_INCLUDE_DIR NAMES gmp.h )
|
||||
find_library(GMP_LIBRARIES NAMES gmp libgmp)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
FIND_PACKAGE_HANDLE_STANDARD_ARGS(GMP DEFAULT_MSG GMP_INCLUDE_DIR GMP_LIBRARIES)
|
||||
|
||||
mark_as_advanced(GMP_INCLUDE_DIR GMP_LIBRARIES)
|
|
@ -0,0 +1,3 @@
|
|||
The FindGMP module comes from KDE's Extra CMake Modules v5.62.0, see:
|
||||
- https://api.kde.org/ecm/
|
||||
- https://cgit.kde.org/extra-cmake-modules.git/
|
|
@ -2,6 +2,7 @@
|
|||
find_package(GSL 2.0 REQUIRED)
|
||||
find_package(BLAS REQUIRED)
|
||||
find_package(LAPACK REQUIRED)
|
||||
find_package(GMP REQUIRED)
|
||||
|
||||
|
||||
#includes
|
||||
|
@ -12,7 +13,7 @@ add_library (qpms SHARED translations.c tmatrices.c vecprint.c vswf.c wigner.c e
|
|||
ewaldsf.c pointgroups.c latticegens.c
|
||||
lattices2d.c gaunt.c error.c legendre.c symmetries.c vecprint.c
|
||||
bessel.c own_zgemm.c parsing.c scatsystem.c materials.c drudeparam_data.c
|
||||
lll.c
|
||||
lll.c polynomials.c
|
||||
)
|
||||
use_c99()
|
||||
|
||||
|
@ -23,6 +24,7 @@ target_link_libraries (qpms
|
|||
lapack
|
||||
blas
|
||||
amos
|
||||
gmp
|
||||
)
|
||||
target_include_directories (qpms PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
|
|
|
@ -0,0 +1,146 @@
|
|||
from libc.limits cimport INT_MIN, INT_MAX, UINT_MAX, LONG_MIN, LONG_MAX, ULONG_MAX
|
||||
from gmpy2 cimport * # requires gmpy2>=2.1.0 or later (pip has currently 2.0.something)
|
||||
|
||||
cdef extern from "gmp.h":
|
||||
# cdef struct __mpq_struct:
|
||||
# pass
|
||||
# ctypedef __mpq_struct mpq_t[1]
|
||||
# cdef struct __mpz_struct:
|
||||
# pass
|
||||
# ctypedef __mpz_struct mpz_t[1]
|
||||
double mpz_get_d(const mpz_t op)
|
||||
void mpq_init(mpq_t q)
|
||||
void mpq_clear(mpq_t q)
|
||||
int mpq_sgn(mpq_t q)
|
||||
|
||||
cdef extern from "polynomials.h":
|
||||
cdef struct qpq_t:
|
||||
int order
|
||||
int offset
|
||||
int capacity
|
||||
mpq_t *coeffs
|
||||
|
||||
void qpq_init(qpq_t *p, int capacity)
|
||||
void qpq_extend(qpq_t *p, int new_capacity)
|
||||
void qpq_set(qpq_t *copy, const qpq_t *orig)
|
||||
void qpq_set_elem(qpq_t *p, int exponent, const mpq_t coeff)
|
||||
void qpq_set_elem_si(qpq_t *p, int exponent, long numerator, unsigned long denominator)
|
||||
void qpq_get_elem(mpq_t coeff, const qpq_t *p, int exponent)
|
||||
int qpq_get_elem_si(long *numerator, unsigned long *denominator, const qpq_t *p, int exponent)
|
||||
void qpq_clear(qpq_t *p)
|
||||
void qpq_add(qpq_t *sum, const qpq_t *addend1, const qpq_t *addend2)
|
||||
void qpq_sub(qpq_t *difference, const qpq_t *minuend, const qpq_t *substrahend)
|
||||
void qpq_mul(qpq_t *product, const qpq_t *multiplier, const qpq_t *multiplicand)
|
||||
void qpq_div(qpq_t *quotient, qpq_t *remainder, const qpq_t *dividend, const qpq_t *divisor)
|
||||
void qpq_deriv(qpq_t *dPdx, const qpq_t *P)
|
||||
bint qpq_nonzero(const qpq_t *)
|
||||
|
||||
|
||||
import_gmpy2() # needed to initialise the C-API
|
||||
|
||||
cdef class qpq:
|
||||
""" Polynomials with rational coefficients """
|
||||
cdef qpq_t p
|
||||
|
||||
def __cinit__(self, *args, **kwargs):
|
||||
qpq_init(&self.p, 0)
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
cdef int offset, order
|
||||
cdef dict thedict
|
||||
cdef mpq coeff
|
||||
if len(args) > 0 and isinstance(args[0], dict) and len(args[0]) > 0:
|
||||
thedict = args[0]
|
||||
keys = thedict.keys()
|
||||
for key in keys:
|
||||
if not isinstance(key, int) or key < 0 or key > INT_MAX:
|
||||
raise TypeError("Coefficient dictionary keys must be non-negative integers.")
|
||||
offset = min(keys)
|
||||
order = max(keys)
|
||||
qpq_extend(&self.p, order - offset + 1)
|
||||
self.p.order = order
|
||||
self.p.offset = offset
|
||||
for key, val in thedict.items():
|
||||
if MPQ_Check(val):
|
||||
coeff = val
|
||||
else:
|
||||
coeff = mpq(val)
|
||||
qpq_set_elem(&self.p, key, MPQ(coeff))
|
||||
return
|
||||
|
||||
def __dealloc__(self):
|
||||
qpq_clear(&self.p)
|
||||
|
||||
def __getitem__(self, key):
|
||||
# Only one coefficient a time supported right now
|
||||
cdef mpq q
|
||||
cdef mpq_t cq
|
||||
if isinstance(key, int):
|
||||
if key >= 0 and key <= INT_MAX:
|
||||
""" Can we alternatively do it like:
|
||||
q = mpq() # or GMPy_MPQ_New(NULL) ?
|
||||
qpq_get_elem(MPQ(q), &self.p, key)
|
||||
return q
|
||||
? """
|
||||
mpq_init(cq)
|
||||
qpq_get_elem(cq, &self.p, key)
|
||||
q = GMPy_MPQ_From_mpq(cq)
|
||||
mpq_clear(cq)
|
||||
return q
|
||||
else: raise IndexError("Only non-negative int exponents (indices) allowed.")
|
||||
else: raise TypeError("Only integer exponents (indices) allowed.")
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
# Only one coefficient a time supported right now
|
||||
if not MPQ_Check(value):
|
||||
value = mpq(value)
|
||||
if (isinstance(key, int)):
|
||||
if key >= 0 and key <= INT_MAX:
|
||||
qpq_set_elem(&self.p, key, MPQ(value))
|
||||
else: raise IndexError("Only non-negative int exponents (indices) allowed.")
|
||||
else: raise TypeError("Only integer exponents (indices) allowed.")
|
||||
|
||||
def __add__(qpq self, qpq other):
|
||||
cdef qpq result = qpq()
|
||||
qpq_add(&result.p, &self.p, &other.p)
|
||||
return result
|
||||
def __sub__(qpq self, qpq other):
|
||||
cdef qpq result = qpq()
|
||||
qpq_sub(&result.p, &self.p, &other.p)
|
||||
return result
|
||||
def __mul__(qpq self, qpq other):
|
||||
cdef qpq result = qpq()
|
||||
qpq_mul(&result.p, &self.p, &other.p)
|
||||
return result
|
||||
def __divmod__(qpq self, qpq other):
|
||||
cdef qpq q = qpq(), r = qpq()
|
||||
qpq_div(&q.p, &r.p, &self.p, &other.p)
|
||||
return (q, r)
|
||||
def derivative(self):
|
||||
cdef qpq result = qpq()
|
||||
qpq_deriv(&result.p, &self.p)
|
||||
return result
|
||||
|
||||
@property
|
||||
def order(self):
|
||||
return self.p.order
|
||||
@property
|
||||
def offset(self):
|
||||
return self.p.offset
|
||||
@property
|
||||
def capacity(self):
|
||||
return self.p.capacity
|
||||
|
||||
def coeffdict(self):
|
||||
""" Returns a dictionary of all non-zero coefficients """
|
||||
cdef int exponent, i
|
||||
cdef dict result = dict()
|
||||
cdef mpq coeff
|
||||
if not qpq_nonzero(&self.p):
|
||||
return result
|
||||
for exponent in range(self.p.offset, self.p.order + 1):
|
||||
i = exponent - self.p.offset
|
||||
if mpq_sgn(self.p.coeffs[i]):
|
||||
result[exponent] = GMPy_MPQ_From_mpq(self.p.coeffs[i])
|
||||
return result
|
||||
|
|
@ -0,0 +1,546 @@
|
|||
#include "polynomials.h"
|
||||
#include <stdlib.h>
|
||||
#include "qpms_error.h"
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define MAX(x, y) (((x) > (y)) ? (x) : (y))
|
||||
#define MIN(x, y) (((x) <= (y)) ? (x) : (y))
|
||||
|
||||
#if 0
|
||||
void mpzs_init(mpzs_t x) {
|
||||
mpz_init(x->_1);
|
||||
mpz_init(x->_2);
|
||||
}
|
||||
|
||||
void mpzs_clear(mpzs_t x) {
|
||||
mpz_clear(x->_1);
|
||||
mpz_clear(x->_2);
|
||||
}
|
||||
|
||||
void mpzs_set(mpzs_t x, const mpzs_t y) {
|
||||
mpz_set(x->_1, y->_1);
|
||||
mpz_set(x->_2, y->_2);
|
||||
}
|
||||
|
||||
// Compares the square-rooted part of mpzs_t, so we can use it as a key in a search tree.
|
||||
// Probably deprecated, since we now use hashes.
|
||||
static int mpzs_cmp2(void *op1, void *op2) {
|
||||
mpz_cmpabs(((mpzs_t) op1)->_2, ((mpzs_t) op2)->_2);
|
||||
}
|
||||
#endif
|
||||
|
||||
/// Type representing a number of form \f$ a \sqrt{b}; a \in \ints, b \in \nats \f$.
|
||||
/** This includes UT hash handle structure */
|
||||
typedef struct _qp_mpzs_hashed {
|
||||
mpz_t _1; ///< The integer factor \f$ a \f$.
|
||||
mpz_t _2; ///< The square-rooted factor \f$ b \f$. Always positive.
|
||||
UT_hash_handle hh;
|
||||
} mpzs_hh_t[1];
|
||||
|
||||
void mpzs_hh_init(mpzs_hh_t x);
|
||||
void mpzs_hh_clear(mpzs_hh_t x);
|
||||
void mpzs_hh_set(mpzs_hh_t x, const mpzs_hh_t y);
|
||||
// void mpzs_hh_set_ui(mpzs_hh_t x, long integer_factor, unsigned long sqrt_part);
|
||||
|
||||
|
||||
void mpzs_hh_init(mpzs_hh_t x) {
|
||||
mpz_init(x->_1);
|
||||
mpz_init(x->_2);
|
||||
}
|
||||
|
||||
void mpzs_hh_clear(mpzs_hh_t x) {
|
||||
mpz_clear(x->_1);
|
||||
mpz_clear(x->_2);
|
||||
}
|
||||
|
||||
void mpzs_hh_set(mpzs_hh_t x, const mpzs_hh_t y) {
|
||||
mpz_set(x->_1, y->_1);
|
||||
mpz_set(x->_2, y->_2);
|
||||
}
|
||||
|
||||
static inline void mpzs_hash_clear(struct _qp_mpzs_hashed **hash) {
|
||||
struct _qp_mpzs_hashed *current, *tmp;
|
||||
HASH_ITER(hh, *hash, current, tmp) {
|
||||
HASH_DEL(*hash, current);
|
||||
free(current);
|
||||
//x->sz--;
|
||||
}
|
||||
}
|
||||
|
||||
/* Append an mpzs element to a mpzs sum that must not contain a matching key
|
||||
* in advance.
|
||||
*/
|
||||
static inline void mpzs_hash_append(struct _qp_mpzs_hashed **hash,
|
||||
const struct _qp_mpzs_hashed *newelem) {
|
||||
struct _qp_mpzs_hashed *n;
|
||||
QPMS_CRASHING_MALLOC(n, sizeof(mpzs_hh_t));
|
||||
mpzs_hh_init(n);
|
||||
mpzs_hh_set(n, newelem);
|
||||
HASH_ADD_KEYPTR(hh, *hash, mpz_limbs_read(n->_2),
|
||||
mpz_size(n->_2) * sizeof(mp_limb_t), n);
|
||||
}
|
||||
|
||||
// Arithmetically add an mpzs element to a mpzs sum/hash.
|
||||
static inline void mpzs_hash_addelem(struct _qp_mpzs_hashed **hash,
|
||||
const struct _qp_mpzs_hashed *addend) {
|
||||
struct _qp_mpzs_hashed *s;
|
||||
HASH_FIND(hh, *hash, mpz_limbs_read(addend->_2),
|
||||
mpz_size(addend->_2), s);
|
||||
if (!s) mpzs_hash_append(hash, addend); // if not found
|
||||
else {
|
||||
mpz_add(s->_1, s->_1, addend->_1);
|
||||
if(!mpz_sgn(s->_1)) { // If zero, annihilate
|
||||
HASH_DEL(*hash, s);
|
||||
mpzs_hh_clear(s);
|
||||
free(s);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Multiplies two mpzs hashes, adding them to *prod;
|
||||
// *prod must differ from x and y (this is not checked)
|
||||
static inline void mpzs_hash_mul(struct _qp_mpzs_hashed **prod,
|
||||
const struct _qp_mpzs_hashed *x, const struct _qp_mpzs_hashed *y) {
|
||||
mpz_t gcd; mpz_init(gcd); // common denominator of the sqrt to factor out
|
||||
mpz_t mx, my; mpz_init(mx); mpz_init(my);
|
||||
mpzs_hh_t addend; mpzs_hh_init(addend);
|
||||
|
||||
for (const struct _qp_mpzs_hashed *nx = x;
|
||||
nx != NULL; nx = nx->hh.next) {
|
||||
for (const struct _qp_mpzs_hashed *ny = y;
|
||||
ny != NULL; ny = ny->hh.next) {
|
||||
mpz_gcd(gcd, nx->_2, ny->_2);
|
||||
mpz_divexact(mx, nx->_2, gcd);
|
||||
mpz_divexact(my, ny->_2, gcd);
|
||||
mpz_mul(addend->_2, mx, my);
|
||||
mpz_mul(addend->_1, ny->_1, nx->_1);
|
||||
mpz_mul(addend->_1, addend->_1, gcd);
|
||||
mpzs_hash_addelem(prod, addend);
|
||||
}
|
||||
}
|
||||
mpzs_hh_clear(addend);
|
||||
mpz_clear(mx); mpz_clear(my); mpz_clear(gcd);
|
||||
}
|
||||
|
||||
|
||||
//===== mpqs_t =====
|
||||
|
||||
void mpqs_init(mpqs_t x) {
|
||||
//x->sz = 0;
|
||||
x->nt = 0;
|
||||
mpq_init(x->f);
|
||||
mpq_set_ui(x->f, 1, 1);
|
||||
}
|
||||
|
||||
void mpqs_clear_num(struct _qp_mpqs *x) {
|
||||
mpzs_hash_clear(&(x->nt));
|
||||
}
|
||||
|
||||
void mpqs_clear(mpqs_t x) {
|
||||
mpqs_clear_num(x);
|
||||
mpq_clear(x->f);
|
||||
//x->sz = 0;
|
||||
x->nt = 0;
|
||||
}
|
||||
|
||||
// Append an element to mpqs_t's numerator hash without any checks.
|
||||
void mpqs_nt_append(mpqs_t x, const struct _qp_mpzs_hashed *numelem) {
|
||||
mpzs_hash_append(&(x->nt), numelem);
|
||||
}
|
||||
|
||||
void mpqs_set_z(mpqs_t x, const mpz_t num1, const mpz_t num2,
|
||||
const mpz_t den) {
|
||||
mpqs_clear_num(x);
|
||||
if (mpz_sgn(num1) == 0 || mpz_sgn(num2) == 0) return;
|
||||
mpz_abs(mpq_numref(x->f), num1);
|
||||
mpz_abs(mpq_denref(x->f), den);
|
||||
mpq_canonicalize(x->f);
|
||||
mpzs_hh_t tmp; mpzs_hh_init(tmp);
|
||||
mpz_set_si(tmp->_1, mpz_sgn(num1) * mpz_sgn(den));
|
||||
mpz_set(tmp->_2, num2);
|
||||
mpqs_nt_append(x, tmp);
|
||||
mpzs_hh_clear(tmp);
|
||||
}
|
||||
|
||||
void mpqs_set_si(mpqs_t x, long num1, unsigned long num2,
|
||||
unsigned long den) {
|
||||
mpqs_clear_num(x);
|
||||
if(num1 == 0 || num2 == 0) return;
|
||||
mpz_set_ui(mpq_numref(x->f), labs(num1));
|
||||
mpz_set_ui(mpq_denref(x->f), den);
|
||||
mpq_canonicalize(x->f);
|
||||
mpzs_hh_t tmp; mpzs_hh_init(tmp);
|
||||
mpz_set_si(tmp->_1, (num1 < 0) ? -1 : 1);
|
||||
mpz_set_ui(tmp->_2, num2);
|
||||
mpqs_nt_append(x, tmp);
|
||||
mpzs_hh_clear(tmp);
|
||||
}
|
||||
|
||||
// Arithmetically adds an element to mpqs's numerator hash.
|
||||
void mpqs_nt_addelem(mpqs_t x, const struct _qp_mpzs_hashed *addend) {
|
||||
mpzs_hash_addelem(&(x->nt), addend);
|
||||
}
|
||||
|
||||
void mpqs_init_set(mpqs_t dest, const mpqs_t src) {
|
||||
mpqs_init(dest);
|
||||
mpq_set(dest->f, src->f);
|
||||
struct _qp_mpzs_hashed *numitem, *tmp;
|
||||
HASH_ITER(hh, src->nt, numitem, tmp) {
|
||||
mpqs_nt_append(dest, numitem);
|
||||
}
|
||||
}
|
||||
|
||||
void mpqs_set(mpqs_t x, const mpqs_t y) {
|
||||
mpqs_clear(x);
|
||||
mpqs_init_set(x, y);
|
||||
}
|
||||
|
||||
void mpqs_neg_inplace(mpqs_t x) {
|
||||
for(struct _qp_mpzs_hashed *n = (x->nt)->hh.next; n != NULL; n = n->hh.next) {
|
||||
mpz_neg(n->_1, n->_1);
|
||||
}
|
||||
}
|
||||
|
||||
void mpqs_neg(mpqs_t negated_operand, const mpqs_t operand) {
|
||||
mpqs_set(negated_operand, operand);
|
||||
mpqs_neg_inplace(negated_operand);
|
||||
}
|
||||
|
||||
void mpqs_nt_gcd(mpz_t gcd, const mpqs_t x) {
|
||||
if(x->nt) {
|
||||
mpz_set(gcd, x->nt->_1);
|
||||
for(struct _qp_mpzs_hashed *n = (x->nt)->hh.next; n != NULL; n = n->hh.next) {
|
||||
mpz_gcd(gcd, gcd, n->_1);
|
||||
}
|
||||
} else
|
||||
mpz_set_ui(gcd, 1);
|
||||
}
|
||||
|
||||
void mpqs_canonicalise(mpqs_t x) {
|
||||
mpz_t gcd; mpz_init(gcd);
|
||||
mpqs_nt_gcd(gcd, x);
|
||||
mpz_mul(mpq_numref(x->f), mpq_numref(x->f), gcd);
|
||||
for(struct _qp_mpzs_hashed *n = (x->nt); n != NULL; n = n->hh.next) {
|
||||
mpz_divexact(n->_1, n->_1, gcd);
|
||||
}
|
||||
mpz_clear(gcd);
|
||||
mpq_canonicalize(x->f);
|
||||
}
|
||||
|
||||
void mpqs_add(mpqs_t sum_final, const mpqs_t x, const mpqs_t y) {
|
||||
mpqs_t sum; mpqs_init(sum);
|
||||
mpqs_set(sum, x);
|
||||
|
||||
// Denominators gcd
|
||||
mpz_t den_gcd; mpz_init(den_gcd);
|
||||
mpz_gcd(den_gcd, mpq_denref(x->f), mpq_denref(y->f));
|
||||
// Common denominator
|
||||
mpz_divexact(mpq_denref(sum->f), mpq_denref(sum->f), den_gcd);
|
||||
mpz_mul(mpq_denref(sum->f), mpq_denref(sum->f), mpq_denref(y->f));
|
||||
|
||||
// Left operand numerator factor
|
||||
mpz_t tmp; mpz_init(tmp);
|
||||
mpz_divexact(tmp, mpq_denref(y->f), den_gcd);
|
||||
mpz_mul(tmp, tmp, mpq_numref(x->f));
|
||||
/* Distribute the factor to numerator elements; this approach might be
|
||||
* be suboptimal if x is a complicated expression
|
||||
* and y is quite simple. Maybe optimise later
|
||||
*/
|
||||
for(struct _qp_mpzs_hashed *n = sum->nt; n != NULL; n = n->hh.next)
|
||||
mpz_mul(n->_1, n->_1, tmp);
|
||||
mpz_set_ui(mpq_numref(sum->f), 1);
|
||||
|
||||
// At this point, sum is equal to x but in a form prepared to
|
||||
// take summands from y.
|
||||
|
||||
// Right operand numerator factor
|
||||
mpz_divexact(tmp, mpq_denref(x->f), den_gcd);
|
||||
mpz_mul(tmp, tmp, mpq_numref(y->f));
|
||||
|
||||
mpzs_hh_t addend; mpzs_hh_init(addend);
|
||||
for(const struct _qp_mpzs_hashed *n = y->nt; n != NULL; n = n->hh.next) {
|
||||
mpz_mul(addend->_1, tmp, n->_1);
|
||||
mpz_set(addend->_2, n->_2);
|
||||
mpqs_nt_addelem(sum, addend);
|
||||
}
|
||||
mpzs_hh_clear(addend);
|
||||
mpz_clear(tmp);
|
||||
mpz_clear(den_gcd);
|
||||
|
||||
mpqs_canonicalise(sum);
|
||||
mpqs_set(sum_final, sum);
|
||||
mpqs_clear(sum);
|
||||
}
|
||||
|
||||
void mpqs_sub(mpqs_t dif, const mpqs_t x, const mpqs_t y) {
|
||||
// This is probably not optimal
|
||||
mpqs_t tmp; mpqs_init(tmp);
|
||||
mpqs_neg(tmp, y);
|
||||
mpqs_add(dif, x, tmp);
|
||||
mpqs_clear(tmp);
|
||||
}
|
||||
|
||||
|
||||
void mpqs_mul(mpqs_t product_final, const mpqs_t x, const mpqs_t y) {
|
||||
mpqs_t prod; mpqs_init(prod);
|
||||
|
||||
mpz_mul(mpq_numref(prod->f), mpq_numref(x->f), mpq_numref(y->f));
|
||||
mpz_mul(mpq_denref(prod->f), mpq_denref(x->f), mpq_denref(y->f));
|
||||
|
||||
mpzs_hash_mul(&(prod->nt), x->nt, y->nt);
|
||||
|
||||
mpqs_canonicalise(prod);
|
||||
mpqs_set(product_final, prod);
|
||||
mpqs_clear(prod);
|
||||
}
|
||||
|
||||
|
||||
// Auxillary function to set a mpq_t to 0/1
|
||||
static inline void mpq_zero(mpq_t q) {
|
||||
// Maybe not the best way to set it to zero.
|
||||
// Alternatively, we could use just mpz_set_si(mpq_numref(sum->coeffs[i - minoffset]), 0);
|
||||
mpq_clear(q);
|
||||
mpq_init(q);
|
||||
}
|
||||
|
||||
|
||||
// TODO to the template
|
||||
|
||||
static inline void qpq_zero(qpq_t *q) {
|
||||
qpq_clear(q);
|
||||
}
|
||||
|
||||
|
||||
#define TEMPLATE_QPQ
|
||||
#include "polynomials.template"
|
||||
#undef TEMPLATE_QPQ
|
||||
|
||||
#if 0
|
||||
// Used in the template but perhaps not too useful to put in the header.
|
||||
static inline void mpqs_set_si(mpqs_t q, int num, unsigned den) {mpq_set_si(q->_2, num, den) ;}
|
||||
|
||||
// TODO Put into the template
|
||||
static inline void mpqs_zero(mpqs_t q) {
|
||||
mpqs_clear(q);
|
||||
mpqs_init(q);
|
||||
}
|
||||
|
||||
static inline void qpqs_zero(qpqs_t *q) {
|
||||
qpqs_clear(q);
|
||||
}
|
||||
|
||||
#define TEMPLATE_QPQS
|
||||
#include "polynomials.template"
|
||||
#undef TEMPLATE_QPQS
|
||||
|
||||
|
||||
static void qpq_dbgprint(const qpq_t *p) {
|
||||
for(int n = p->order; n >= p->offset; --n)
|
||||
if(mpq_sgn(p->coeffs[n - p->offset]))
|
||||
gmp_printf("%+Qdx**%d ", p->coeffs[n - p->offset], n);
|
||||
gmp_printf("[%d, %d, %d]\n", p->capacity, p->order, p->offset);
|
||||
}
|
||||
#endif
|
||||
|
||||
void qpq_set_elem_si(qpq_t *p, const int exponent, const long int num, const unsigned long int den) {
|
||||
mpq_t q;
|
||||
mpq_init(q);
|
||||
mpq_set_si(q, num, den);
|
||||
qpq_set_elem(p, exponent, q);
|
||||
mpq_clear(q);
|
||||
}
|
||||
|
||||
int qpq_get_elem_si(long *num, unsigned long *den, const qpq_t *p, const int exponent) {
|
||||
mpq_t q;
|
||||
mpq_init(q);
|
||||
qpq_get_elem(q, p, exponent);
|
||||
int retval = 0;
|
||||
*num = mpz_get_si(mpq_numref(q));
|
||||
if (!mpz_fits_slong_p(mpq_numref(q)))
|
||||
retval += 1;
|
||||
*den = mpz_get_ui(mpq_denref(q));
|
||||
if (!mpz_fits_ulong_p(mpq_denref(q)))
|
||||
retval += 2;
|
||||
mpq_clear(q);
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
||||
void qpq_add(qpq_t *sum, const qpq_t *x, const qpq_t *y) {
|
||||
const int maxorder = MAX(x->order, y->order);
|
||||
const int minoffset = MIN(x->offset, y->offset);
|
||||
qpq_extend(sum, maxorder - minoffset + 1);
|
||||
/* if sum is actually some of the summands and that summand has higher
|
||||
* offset, we have to lower the offset.
|
||||
*/
|
||||
if ((sum == x || sum == y) && sum->offset > minoffset)
|
||||
qpq_lower_offset(sum, sum->offset - minoffset);
|
||||
|
||||
for (int i = minoffset; i <= maxorder; ++i) {
|
||||
if (i - x->offset >= 0 && i <= x->order) {
|
||||
if (i - y->offset >= 0 && i <= y->order)
|
||||
mpq_add(sum->coeffs[i - minoffset],
|
||||
x->coeffs[i - x->offset], y->coeffs[i - y->offset]);
|
||||
else
|
||||
mpq_set(sum->coeffs[i - minoffset], x->coeffs[i - x->offset]);
|
||||
} else {
|
||||
if (i - y->offset >= 0 && i <= y->order)
|
||||
mpq_set(sum->coeffs[i - minoffset], y->coeffs[i - y->offset]);
|
||||
else {
|
||||
mpq_zero(sum->coeffs[i - minoffset]);
|
||||
}
|
||||
}
|
||||
}
|
||||
sum->offset = minoffset;
|
||||
sum->order = maxorder;
|
||||
}
|
||||
|
||||
void qpq_sub(qpq_t *dif, const qpq_t *x, const qpq_t *y) {
|
||||
const int maxorder = MAX(x->order, y->order);
|
||||
const int minoffset = MIN(x->offset, y->offset);
|
||||
qpq_extend(dif, maxorder - minoffset + 1);
|
||||
/* if dif is actually some of the summands and that summand has higher
|
||||
* offset, we have to lower the offset.
|
||||
*/
|
||||
if ((dif == x || dif == y) && dif->offset > minoffset)
|
||||
qpq_lower_offset(dif, dif->offset - minoffset);
|
||||
|
||||
for (int i = minoffset; i <= maxorder; ++i) {
|
||||
if (i - x->offset >= 0 && i <= x->order) {
|
||||
if (i - y->offset >= 0 && i <= y->order)
|
||||
mpq_sub(dif->coeffs[i - minoffset],
|
||||
x->coeffs[i - x->offset], y->coeffs[i - y->offset]);
|
||||
else
|
||||
mpq_set(dif->coeffs[i - minoffset], x->coeffs[i - x->offset]);
|
||||
} else {
|
||||
if (i - y->offset >= 0 && i <= y->order) {
|
||||
mpq_set(dif->coeffs[i - minoffset], y->coeffs[i - y->offset]);
|
||||
mpq_neg(dif->coeffs[i - minoffset], dif->coeffs[i - minoffset]);
|
||||
} else {
|
||||
mpq_zero(dif->coeffs[i - minoffset]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dif->offset = minoffset;
|
||||
dif->order = maxorder;
|
||||
}
|
||||
|
||||
void qpq_mul(qpq_t *p_orig, const qpq_t *x, const qpq_t *y) {
|
||||
|
||||
const int maxorder = x->order + y->order;
|
||||
const int minoffset = x->offset + y->offset;
|
||||
|
||||
qpq_t p[1];
|
||||
qpq_init(p, maxorder - minoffset + 1);
|
||||
mpq_t tmp; mpq_init(tmp);
|
||||
for (int xi = x->offset; xi <= x->order; ++xi)
|
||||
for (int yi = y->offset; yi <= y->order; ++yi) {
|
||||
mpq_mul(tmp, x->coeffs[xi - x->offset], y->coeffs[yi - y->offset]);
|
||||
mpq_add(p->coeffs[xi + yi - minoffset], p->coeffs[xi + yi - minoffset], tmp);
|
||||
}
|
||||
mpq_clear(tmp);
|
||||
p->order = maxorder;
|
||||
p->offset = minoffset;
|
||||
qpq_set(p_orig, p);
|
||||
qpq_clear(p);
|
||||
}
|
||||
|
||||
void qpq_div(qpq_t *q_orig, qpq_t *r_orig, const qpq_t *dend, const qpq_t *dor) {
|
||||
QPMS_ENSURE(q_orig != r_orig,
|
||||
"Quotient and remainder must be _different_ instances of qpq_t.");
|
||||
|
||||
|
||||
// Split the divisor into "head" and "tail"
|
||||
qpq_t dor_tail[1]; qpq_init(dor_tail, dor->order - dor->offset); // divisor tail
|
||||
qpq_set(dor_tail, dor);
|
||||
qpq_canonicalise(dor_tail);
|
||||
QPMS_ENSURE(qpq_nonzero(dor_tail), "The divisor must be non-zero");
|
||||
|
||||
const int dor_order = dor_tail->order;
|
||||
mpq_t dor_head; mpq_init(dor_head);
|
||||
mpq_set(dor_head, dor_tail->coeffs[dor_order - dor_tail->offset]);
|
||||
dor_tail->order--;
|
||||
|
||||
qpq_t q[1]; qpq_init(q, dend->order - dor_order + 1);
|
||||
q->order = dend->order - dor_order;
|
||||
q->offset = 0;
|
||||
|
||||
// Assign the dividend to r but with extended capacity (with zero offset)
|
||||
qpq_t r[1]; qpq_init(r, dend->order + 1);
|
||||
r->offset = 0;
|
||||
r->order = dend->order;
|
||||
for (int n = dend->offset; n <= dend->order; ++n)
|
||||
mpq_set(r->coeffs[n], dend->coeffs[n - dend->offset]);
|
||||
|
||||
qpq_t f[1]; qpq_init(f, 1);
|
||||
qpq_t ftail[1]; qpq_init(ftail, dor_tail->order - dor_tail->offset + 1);
|
||||
for(; r->order >= dor_order; --r->order) {
|
||||
// Compute the current order (r->order - dor_order) of q
|
||||
mpq_t * const hicoeff = &(q->coeffs[r->order - dor_order]);
|
||||
mpq_div(*hicoeff, r->coeffs[r->order], dor_head);
|
||||
mpq_canonicalize(*hicoeff);
|
||||
|
||||
// Update the remainder
|
||||
f->offset = f->order = r->order - dor_order;
|
||||
mpq_set(f->coeffs[0], *hicoeff);
|
||||
qpq_mul(ftail, f, dor_tail);
|
||||
qpq_sub(r, r, ftail);
|
||||
}
|
||||
qpq_clear(ftail);
|
||||
qpq_clear(f);
|
||||
mpq_clear(dor_head);
|
||||
qpq_clear(dor_tail);
|
||||
|
||||
qpq_canonicalise(r);
|
||||
qpq_canonicalise(q);
|
||||
qpq_set(q_orig, q);
|
||||
qpq_set(r_orig, r);
|
||||
qpq_clear(r); qpq_clear(f);
|
||||
}
|
||||
|
||||
|
||||
void qpq_deriv(qpq_t *dp, const qpq_t *p) {
|
||||
if (p->order <= 0) { // p is constant, dp is zero.
|
||||
qpq_clear(dp);
|
||||
return;
|
||||
}
|
||||
|
||||
qpq_extend(dp, p->order - p->offset + (p->offset > 0));
|
||||
|
||||
mpq_t qi;
|
||||
mpq_init(qi); // qi is now 0 / 1
|
||||
for(int i = p->offset + !p->offset; i <= p->order; ++i) {
|
||||
mpz_set_si(mpq_numref(qi), i); // qi is now i / 1
|
||||
mpq_mul(dp->coeffs[i-1], qi, p->coeffs[i]);
|
||||
}
|
||||
mpq_clear(qi);
|
||||
dp->order = p->order - 1;
|
||||
dp->offset = p->offset - 1 + !p->offset;
|
||||
}
|
||||
|
||||
|
||||
void qpq_legendroid_init(qpq_legendroid_t *p) {
|
||||
qpq_init(&p->p, 0);
|
||||
p->f = 0;
|
||||
}
|
||||
|
||||
void qpq_legendroid_clear(qpq_legendroid_t *p) {
|
||||
qpq_clear(&p->p);
|
||||
p->f = 0;
|
||||
}
|
||||
|
||||
void qpq_legendroid_mul(qpq_legendroid_t *p, const qpq_legendroid_t *a, const qpq_legendroid_t *b) {
|
||||
qpq_mul(&p->p, &a->p, &b->p);
|
||||
if (a->f && b->f) {
|
||||
// TODO make somehow a static representation of this constant polynomial
|
||||
qpq_t ff;
|
||||
qpq_init(&ff, 3);
|
||||
qpq_set_elem_si(&ff, 0, -1, 1);
|
||||
qpq_set_elem_si(&ff, 2, 1, 1);
|
||||
qpq_mul(&p->p, &p->p, &ff);
|
||||
qpq_clear(&ff);
|
||||
}
|
||||
p->f = !(a->f) != !(b->f);
|
||||
}
|
||||
|
|
@ -0,0 +1,179 @@
|
|||
/** \file polynomials.h
|
||||
* \brief Basic operations with polynomials.
|
||||
*
|
||||
*/
|
||||
#ifndef QPMS_POLYNOMIALS_H
|
||||
#include <gmp.h>
|
||||
#include "uthash.h"
|
||||
|
||||
/// Polynomial with rational coeffs.
|
||||
// TODO more docs about initialisation etc.
|
||||
typedef struct qpq_t {
|
||||
int order;
|
||||
int offset;
|
||||
int capacity;
|
||||
mpq_t *coeffs;
|
||||
} qpq_t;
|
||||
|
||||
const static qpq_t QPQ_ZERO = {-1, 0, 0, NULL};
|
||||
|
||||
/// Initiasise the coefficients array in qpq_t.
|
||||
/** Do not use on qpq_t that has already been initialised
|
||||
* (and not recently cleared),
|
||||
* otherwise you can get a memory leak.
|
||||
*/
|
||||
void qpq_init(qpq_t *p, int capacity);
|
||||
|
||||
/// Extend capacity of a qpq_t instance.
|
||||
/** If the requested new_capacity is larger than the qpq_t's
|
||||
* capacity, the latter is extended to match new_capacity.
|
||||
* Otherwise, nothing happend (this function does _not_ trim
|
||||
* the capacity).
|
||||
*/
|
||||
void qpq_extend(qpq_t *p, int new_capacity);
|
||||
|
||||
/// Shrinks the capacity to the minimum that can store the current polynomial.
|
||||
void qpq_shrink(qpq_t *p);
|
||||
|
||||
/// Canonicalises the coefficients and (re)sets the correct degree.
|
||||
void qpq_canonicalise(qpq_t *p);
|
||||
|
||||
void qpq_set(qpq_t *copy, const qpq_t *orig);
|
||||
|
||||
void qpq_set_elem(qpq_t *p, int exponent, const mpq_t coeff);
|
||||
void qpq_set_elem_si(qpq_t *p, int exponent, long numerator, unsigned long denominator);
|
||||
void qpq_get_elem(mpq_t coeff, const qpq_t *p, int exponent);
|
||||
/** \returns zero if the result fits into long / unsigned long; non-zero otherwise. */
|
||||
int qpq_get_elem_si(long *numerator, unsigned long *denominator, const qpq_t *p, int exponent);
|
||||
|
||||
/// Deinitialise the coefficients array in qpq_t.
|
||||
void qpq_clear(qpq_t *p);
|
||||
|
||||
/// Polynomial addition.
|
||||
/** Supports operand and result pointer mixing. */
|
||||
void qpq_add(qpq_t *sum, const qpq_t *addend1, const qpq_t *addend2);
|
||||
|
||||
/// Polynomial substraction.
|
||||
/** Supports operand and result pointer mixing. */
|
||||
void qpq_sub(qpq_t *difference, const qpq_t *minuend, const qpq_t *substrahend);
|
||||
|
||||
/// Polynomial multiplication.
|
||||
/** Supports operand and result pointer mixing. */
|
||||
void qpq_mul(qpq_t *product, const qpq_t *multiplier, const qpq_t *multiplicand);
|
||||
|
||||
/// Polynomial division with remainder.
|
||||
/** Supports operand and result pointer mixing. */
|
||||
void qpq_div(qpq_t *quotient, qpq_t *remainder, const qpq_t *dividend, const qpq_t *divisor);
|
||||
|
||||
/// Polynomial derivative.
|
||||
/** Supports operand and result pointer mixing. */
|
||||
void qpq_deriv(qpq_t *dPdx, const qpq_t *P);
|
||||
|
||||
/// Tests whether a polynomial is non-zero.
|
||||
_Bool qpq_nonzero(const qpq_t *);
|
||||
|
||||
|
||||
|
||||
#if 0
|
||||
/// Type representing a number of form \f$ a \sqrt{b}; a \in \ints, b \in \nats \f$.
|
||||
typedef struct _qp_mpzs {
|
||||
mpz_t _1; ///< The integer factor \f$ a \f$.
|
||||
mpz_t _2; ///< The square-rooted factor \f$ b \f$. Always positive.
|
||||
} mpzs_t[1];
|
||||
|
||||
void mpzs_init(mpzs_t x);
|
||||
void mpzs_clear(mpzs_t x);
|
||||
void mpzs_set(mpzs_t x, const mpzs_t y);
|
||||
#endif
|
||||
|
||||
|
||||
struct _qp_mpzs_hashed;
|
||||
|
||||
/// Sum of square roots of rational numbers.
|
||||
/// Represented as \f$ \sum_s a_i \sqrt{b_i} / d \f$.
|
||||
typedef struct _qp_mpqs {
|
||||
//int sz; ///< Used size of the numtree.
|
||||
struct _qp_mpzs_hashed *nt; ///< List of numerator components..
|
||||
mpq_t f; ///< Common rational factor. Always positive.
|
||||
} mpqs_t[1];
|
||||
|
||||
void mpqs_init(mpqs_t x);
|
||||
void mpqs_clear(mpqs_t x);
|
||||
void mpqs_set(mpqs_t x, const mpqs_t y);
|
||||
void mpqs_set_z(mpqs_t x, const mpz_t numerator_int,
|
||||
const mpz_t numerator_sqrt, const mpz_t denominator);
|
||||
void mpqs_set_si(mpqs_t x, long numerator_int,
|
||||
unsigned long numerator_sqrt, unsigned long denominator);
|
||||
void mpqs_add(mpqs_t sum, const mpqs_t addend1, const mpqs_t addend2);
|
||||
void mpqs_neg(mpqs_t negated_operand, const mpqs_t operand);
|
||||
void mpqs_sub(mpqs_t difference, const mpqs_t minuend, const mpqs_t substrahend);
|
||||
void mpqs_mul(mpqs_t product, const mpqs_t multiplier, const mpqs_t multiplicand);
|
||||
//void mpqs_div_zs(mpqs_t quotient, const mpqs_t dividend, const mpzs_hh_t divisor);
|
||||
void mpqs_clear_num(mpqs_t x); ///< Sets the numerator to zero, clearing the numerator tree.
|
||||
|
||||
|
||||
/// A type representing a polynomial with rational coefficients times an optional factor \f$ \sqrt{1-x^2} \f$.
|
||||
typedef struct qpq_legendroid_t {
|
||||
qpq_t p;
|
||||
_Bool f;
|
||||
} qpq_legendroid_t;
|
||||
|
||||
void qpq_legendroid_init(qpq_legendroid_t *p);
|
||||
void qpq_legendroid_clear(qpq_legendroid_t *p);
|
||||
|
||||
/// Polynomial multiplication.
|
||||
void qpq_legendroid_mul(qpq_legendroid_t *product, const qpq_legendroid_t *multiplier, const qpq_legendroid_t *multiplicand);
|
||||
|
||||
/// Polynomial derivative.
|
||||
void qpq_legendroid_deriv(qpq_legendroid_t *dP_dx, const qpq_legendroid_t *P);
|
||||
|
||||
|
||||
/// Polynomial with double coeffs.
|
||||
typedef struct qpz_t {
|
||||
int order;
|
||||
int offset;
|
||||
int capacity;
|
||||
double *coeffs;
|
||||
} qpz_t;
|
||||
|
||||
/// Initiasise the coefficients array in qpz_t.
|
||||
void qpz_init(qpz_t *p, int maxorder);
|
||||
|
||||
/// Deinitialise the coefficients array in qpz_t.
|
||||
void qpz_clear(qpz_t *p);
|
||||
|
||||
/// Polynomial addition.
|
||||
void qpz_add(qpz_t *sum, const qpz_t *addend1, const qpz_t *addend2);
|
||||
|
||||
/// Polynomial substraction.
|
||||
void qpz_sub(qpz_t *difference, const qpz_t *minuend, const qpz_t *substrahend);
|
||||
|
||||
/// Polynomial multiplication.
|
||||
void qpz_mul(qpz_t product, const qpz_t *multiplier, const qpz_t *multiplicand);
|
||||
|
||||
/// Convert rational coefficient polynomial to double coefficient polynomial
|
||||
void qpz_from_qpq(qpz_t *target, const qpq_t *src);
|
||||
|
||||
|
||||
#if 0 // This will go elsewhere
|
||||
/// Table with pre-calculated Ferrers function coeffs.
|
||||
typedef struct qpms_legendre_table_t {
|
||||
qpms_l_t lMax;
|
||||
// TODO
|
||||
} qpms_legendre_table_t;
|
||||
|
||||
/// Constructor for qpms_legendre_table_t.
|
||||
qpms_legendre_table_t *qpms_legendre_table_init(qpms_l_t lMax);
|
||||
|
||||
/// Destructor for qpms_legendre_table_t.
|
||||
void qpms_legendre_table_free(qpms_legendre_table_t *);
|
||||
|
||||
/// Evaluates a Ferrers function.
|
||||
double qpms_legendre_table_eval(const qpms_legendre_table_t *,
|
||||
qpms_l_t l, qpms_m_t m, double x);
|
||||
|
||||
|
||||
// TODO pre-calculate also the products??
|
||||
#endif
|
||||
|
||||
#endif //QPMS_POLYNOMIALS_H
|
|
@ -0,0 +1,159 @@
|
|||
// C preprocessor sorcery inspired by gsl/specfunc/legendre_source.c
|
||||
|
||||
|
||||
|
||||
#if defined(TEMPLATE_QPQ)
|
||||
#define POLYTYPE qpq_t
|
||||
#define COEFTYPE mpq_t
|
||||
#define POLYFUNC(x) qpq_ ## x
|
||||
#define COEFFUNC(x) mpq_ ## x
|
||||
#define POLYTYPE_ZERO QPQ_ZERO
|
||||
|
||||
#elif defined(TEMPLATE_QPQS)
|
||||
#define POLYTYPE qpqs_t
|
||||
#define COEFTYPE mpqs_t
|
||||
#define POLYFUNC(x) qpqs_ ## x
|
||||
#define COEFFUNC(x) mpqs_ ## x
|
||||
#define POLYTYPE_ZERO QPQS_ZERO
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
// POLYTYPE internal consistency check
|
||||
static inline void POLYFUNC(cc)(const POLYTYPE *p) {
|
||||
if (!p->coeffs) return;
|
||||
QPMS_ENSURE(p->capacity >= p->order - p->offset + 1, "POLYTYPE inconsistency detected; have you initialised it properly?");
|
||||
}
|
||||
|
||||
_Bool POLYFUNC(nonzero)(const POLYTYPE *p) {
|
||||
POLYFUNC(cc)(p);
|
||||
if (p->capacity == 0) return false;
|
||||
|
||||
for(int i = 0; i <= p->order - p->offset; ++i)
|
||||
if (COEFFUNC(sgn)(p->coeffs[i]))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
void POLYFUNC(init)(POLYTYPE *p, int capacity) {
|
||||
*p = POLYTYPE_ZERO;
|
||||
if (capacity <= 0)
|
||||
return;
|
||||
QPMS_CRASHING_MALLOC(p->coeffs, capacity * sizeof(COEFTYPE));
|
||||
for(int i = 0; i < capacity; ++i)
|
||||
COEFFUNC(init)(p->coeffs[i]);
|
||||
p->capacity = capacity;
|
||||
}
|
||||
|
||||
void POLYFUNC(extend)(POLYTYPE *p, int cap) {
|
||||
QPMS_ENSURE(p->capacity >= 0, "Got polynomial with negative capacity (%d). Is this a manually allocated one?", p->capacity);
|
||||
if (cap > 0 && cap > p->capacity) {
|
||||
QPMS_CRASHING_REALLOC(p->coeffs, sizeof(COEFTYPE) * cap);
|
||||
for(int i = p->capacity; i < cap; ++i)
|
||||
COEFFUNC(init)(p->coeffs[i]);
|
||||
p->capacity = cap;
|
||||
}
|
||||
}
|
||||
|
||||
void POLYFUNC(shrink)(POLYTYPE *p) {
|
||||
if (p->capacity > 0) {
|
||||
for(int n = p->capacity - 1; n > p->order - p->offset; --n)
|
||||
COEFFUNC(clear)(p->coeffs[n]);
|
||||
p->capacity = p->order - p->offset + 1;
|
||||
if (p->capacity > 0)
|
||||
QPMS_CRASHING_REALLOC(p->coeffs, p->capacity * sizeof(COEFTYPE));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void POLYFUNC(canonicalise)(POLYTYPE *p) {
|
||||
POLYFUNC(cc)(p);
|
||||
// Lower the order if necessary (here one can get -1 if the polynomial is 0)
|
||||
while (p->order >= p->offset && !COEFFUNC(sgn)(p->coeffs[p->order - p->offset])) --p->order;
|
||||
if (p->order < p->offset)
|
||||
POLYFUNC(zero)(p);
|
||||
else { // remove the lowest-order coefficients which are in fact zero.
|
||||
int i = 0;
|
||||
while (i <= p->order - p->offset && !COEFFUNC(sgn)(p->coeffs[i])) ++i;
|
||||
if (i > 0)
|
||||
for (int j = 0; j <= p->order - p->offset - i; ++j)
|
||||
COEFFUNC(swap)(p->coeffs[j], p->coeffs[j+i]);
|
||||
p->offset += i;
|
||||
// canonicalise the fractions
|
||||
for (i = 0; i <= p->order - p->offset; ++i)
|
||||
COEFFUNC(canonicalize)(p->coeffs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void POLYFUNC(set)(POLYTYPE *p, const POLYTYPE *orig) {
|
||||
if(p != orig) {
|
||||
const int order = orig->order, offset = orig->offset;
|
||||
POLYFUNC(extend)(p, order - offset + 1);
|
||||
for (int i = orig->offset; i <= order; ++i)
|
||||
COEFFUNC(set)(p->coeffs[i - offset], orig->coeffs[i - offset]);
|
||||
p->offset = offset;
|
||||
p->order = order;
|
||||
}
|
||||
}
|
||||
|
||||
void POLYFUNC(set_elem)(POLYTYPE *p, const int exponent, const COEFTYPE coeff) {
|
||||
QPMS_ENSURE(exponent >= 0, "Exponent must be non-negative, got %d", exponent);
|
||||
int offset = p->offset, order = p->order;
|
||||
if(COEFFUNC(sgn)(coeff) == 0 && (exponent < offset || exponent > order))
|
||||
return; // exponent out of range, but zero needs not to be assigned explicitly
|
||||
if(exponent < p->offset) {
|
||||
POLYFUNC(extend)(p, p->order - exponent + 1);
|
||||
offset = exponent;
|
||||
for(int i = order - offset; i >= p->offset - offset; --i)
|
||||
COEFFUNC(swap)(p->coeffs[i], p->coeffs[i - (p->offset - offset)]);
|
||||
for(int i = p->offset - offset - 1; i > 0; --i)
|
||||
COEFFUNC(zero)(p->coeffs[i]);
|
||||
p->offset = offset;
|
||||
}
|
||||
if(exponent > order) {
|
||||
POLYFUNC(extend)(p, exponent - p->offset + 1);
|
||||
for(int i = p->order - p->offset + 1; i <= exponent - p->offset; ++i)
|
||||
COEFFUNC(zero)(p->coeffs[i]);
|
||||
p->order = exponent;
|
||||
}
|
||||
COEFFUNC(set)(p->coeffs[exponent - p->offset], coeff);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
void POLYFUNC(get_elem)(COEFTYPE coeff, const POLYTYPE *p, const int exponent) {
|
||||
if (exponent < p->offset || exponent > p->order)
|
||||
COEFFUNC(zero)(coeff);
|
||||
else
|
||||
COEFFUNC(set)(coeff, p->coeffs[exponent-p->offset]);
|
||||
}
|
||||
|
||||
|
||||
void POLYFUNC(clear)(POLYTYPE *p) {
|
||||
if (p->capacity > 0) {
|
||||
for (int i = p->capacity - 1; i >= 0; --i)
|
||||
COEFFUNC(clear)(p->coeffs[i]);
|
||||
free(p->coeffs);
|
||||
}
|
||||
*p = POLYTYPE_ZERO;
|
||||
}
|
||||
|
||||
// Auxillary function for lowering the offset
|
||||
void POLYFUNC(lower_offset)(POLYTYPE *p, int dec) {
|
||||
QPMS_ENSURE(dec >= 0, "Offset decrease must be positive, is %d!", dec);
|
||||
QPMS_ENSURE(dec <= p->offset, "Offset can't be pushed below 0, (offset=%d, decr.=%d!)",
|
||||
p->offset, dec);
|
||||
if(dec > 0) {
|
||||
POLYFUNC(extend)(p, p->order - p->offset + dec + 1);
|
||||
for(int i = p->order; i >= p->offset; --i)
|
||||
COEFFUNC(swap)(p->coeffs[i+dec - p->offset], p->coeffs[i - p->offset]);
|
||||
p->offset -= dec;
|
||||
for(int i = dec - 1; i >= 0; --i)
|
||||
COEFFUNC(set_si)(p->coeffs[i], 0, 1);
|
||||
}
|
||||
}
|
||||
#undef POLYTYPE
|
||||
#undef COEFTYPE
|
||||
#undef POLYFUNC
|
||||
#undef COEFFUNC
|
||||
#undef POLYTYPE_ZERO
|
File diff suppressed because it is too large
Load Diff
11
setup.py
11
setup.py
|
@ -135,16 +135,21 @@ qpms_c = Extension('qpms.qpms_c',
|
|||
#extra_objects = ['amos/libamos.a'], # FIXME apparently, I would like to eliminate the need to cmake/make first
|
||||
)
|
||||
|
||||
cypolynomials = Extension('qpms.cypolynomials',
|
||||
sources = ['qpms/cypolynomials.pyx'],
|
||||
libraries=['qpms', 'gsl', 'lapacke', 'blas', 'gslcblas', 'pthread', 'gmp']
|
||||
)
|
||||
|
||||
setup(name='qpms',
|
||||
version = "0.2.996",
|
||||
packages=['qpms'],
|
||||
# libraries = [('amos', {'sources': amos_sources} )],
|
||||
setup_requires=['cython>=0.28',],
|
||||
setup_requires=['cython>=0.28', 'gmpy2>=2.1b'],
|
||||
install_requires=['cython>=0.28',
|
||||
#'quaternion','spherical_functions',
|
||||
'scipy>=0.18.0', 'sympy>=1.2'],
|
||||
'scipy>=0.18.0', 'sympy>=1.2', 'gmpy2>=2.1b'],
|
||||
#dependency_links=['https://github.com/moble/quaternion/archive/v2.0.tar.gz','https://github.com/moble/spherical_functions/archive/master.zip'],
|
||||
ext_modules=cythonize([qpms_c, cywaves, cytranslations, cytmatrices, cycommon, cyquaternions, cybspec, cymaterials], include_path=['qpms', 'amos'], gdb_debug=True),
|
||||
ext_modules=cythonize([qpms_c, cywaves, cytranslations, cytmatrices, cycommon, cyquaternions, cybspec, cymaterials, cypolynomials], include_path=['qpms', 'amos'], gdb_debug=True),
|
||||
cmdclass = {'build_ext': build_ext},
|
||||
zip_safe=False
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue