Compare commits

..

26 Commits

Author SHA1 Message Date
Marek Nečada acc08f8863 Fix finiterectlat-modes.py obvious errors.
Former-commit-id: a538ed6c3c84cebffccd41272994027039e46b57
2020-01-30 02:03:43 +02:00
Marek Nečada b4381bd13d Simple finite řectangular lattice mode search script
Former-commit-id: 374eec706353088dfc3a1248b96be31172bdaefb
2020-01-30 01:42:03 +02:00
Marek Nečada 6233e1c210 Avoid tmgen multiplicities (->slowdown) in ScatteringSystem constructor
Former-commit-id: d4d20d3f019dee1765681d4b2f2fce95ea49fb37
2020-01-28 21:28:07 +02:00
Marek Nečada e3834fdad7 Remove build type hardcode spec.
Also add QPMS_NORETURN attribute/macro.

TODO cherry-pick this


Former-commit-id: 1e5b9ae308ce958f6970ddc343d22ed5f8e5661c
2020-01-28 18:12:35 +02:00
Marek Nečada acec5bed98 Legendre function cache.
Former-commit-id: 17370bcc6d24cebdbfc80c9a3b2801c68f2686ff
2020-01-28 17:25:30 +02:00
Marek Nečada 96c9e95ea0 Parallel modeproblem matrix fixed?
Former-commit-id: 9ad51b186a68689a754ce986d7f8bf2f97ac258f
2020-01-28 13:04:05 +02:00
Marek Nečada 8f4a8c7c7b Fix memory leaks; use error macros
TODO cherry-pick this.


Former-commit-id: be5d23a5b880c46636719c98e5b818388cc9a4c3
2020-01-28 09:51:20 +02:00
Marek Nečada 338fc00bfe Translation-cached version of modeproblem matrix.
Former-commit-id: c76945d915138870e1a4f150038705a5fa82ce48
2020-01-28 07:24:54 +02:00
Marek Nečada 775976816e Use translation cache in beyn's algorithm (full matrix only)
Former-commit-id: b9f95a726a8f4de7e6822c38089ca149e4fad1c9
2020-01-26 11:04:57 +02:00
Marek Nečada 00ab187510 Fix stupid bugs
Former-commit-id: 91cc762c0b228037241536aa18e662596587f0eb
2020-01-26 10:47:42 +02:00
Marek Nečada b62f1dadc5 WIP fixes, cython interface
Former-commit-id: 8a97ee8adf11b21c6fbaf2d0afe6c6d2e81a8d69
2020-01-26 09:33:20 +02:00
Marek Nečada 7d19bed4cd Booster constructor/destructor calls etc.
Former-commit-id: 8bf3c410498ae79a7bfb22b6644b465657b62752
2020-01-26 08:03:47 +02:00
Marek Nečada 7a80c9e0f2 Jdu spát
Former-commit-id: fa35c9818ffc5d5a57dfe1881a2a8489039dadb6
2020-01-25 23:39:04 +02:00
Marek Nečada 1f63d2b529 Build modeproblem matrix full w cached Bessels
Former-commit-id: 4cfd631317511ee8765f4a98a179f6295e4142c9
2020-01-23 20:18:26 +02:00
Marek Nečada 2f03fc58b4 Expose qpms_trans_calculator_get_AB_arrays_precalcbuf()
Former-commit-id: 151d3f7bf615366cad3da5589f3165f452c00474
2020-01-23 17:01:31 +02:00
Marek Nečada f33b102768 Extract and inline translation matrix reordering procedure.
Former-commit-id: 9aee9e199b9c3aed76207b1314031278bc4614ea
2020-01-23 16:12:55 +02:00
Marek Nečada e4d84b3b25 Minor translations refactoring.
Former-commit-id: cb3a6e9e5fb1dcfc69f1bc84a46e128bebd27fde
2020-01-23 11:59:13 +02:00
Marek Nečada 5cc29210d7 Jdu spát.
Former-commit-id: e253bb5068bdb4ad8ccef9879dadb8e1463a8968
2020-01-23 00:23:33 +02:00
Marek Nečada effe59bc50 Translation booster: pre-calculate Bessel funs.
Former-commit-id: 85548558b3f65ac9e0a88c72adb4874dab98ca9e
2020-01-23 00:10:34 +02:00
Marek Nečada 8209e9df6e WIP translation booster
Former-commit-id: ce2523b52f5c7bc9a8c6edd79f7e6d329c9634c1
2020-01-22 18:13:10 +02:00
Marek Nečada 8251eba955 WIP translation booster
Former-commit-id: 4ed4c1f7c7948013c4b89bf6cb4c665d541ca3d8
2020-01-22 17:07:15 +02:00
Marek Nečada af12f2301f WIP scatsys translation booster.
Former-commit-id: 2909ff20c1805a9c4a16f0fcd8a82f4c54e1a84a
2020-01-22 14:45:31 +02:00
Marek Nečada a0acdfdc5d Irrep-decomposed scatsys beyn; fix missing FinitePointGroup reference
Former-commit-id: 2829bd16ef4dd30afac5482537dc120c6ad896cc
2020-01-22 13:37:22 +02:00
Marek Nečada 36c6826b5a Beyn algorithm cython wrapper (finite systems)
Former-commit-id: 6dde6db2c89c32e26803cd393e1c7310d21427bd
2020-01-21 18:51:06 +02:00
Marek Nečada ed3322ec93 Beyn wrappers for finite system, doxygen
Former-commit-id: 065d8f5efb10d014a3b52f63b64feaeec6233ae7
2020-01-21 18:20:22 +02:00
Marek Nečada f082838c5f Beyn algorithm "cherry-pick" from 'newbeyn_unitcell'
- Add rank_min_sel argument to beyn_solve() and beyn_solve_gsl()
- Fix order of K and K_coarse evaluation (K_coarse should probably
  be removed).


Former-commit-id: c0a241f8712439ba84e7c907658ebb6071528482
2020-01-21 15:31:38 +02:00
170 changed files with 7186 additions and 16714 deletions

View File

@ -1,83 +0,0 @@
---
kind: pipeline
type: docker
name: buildqpms-alpine-preinstlibs
workspace:
path: /home/qpmsbuild/qpms
# don't run in master until the python/lapacke linking problem is resolved
trigger:
branch:
exclude:
- master
steps:
- name: chown
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
commands:
- chown -R qpmsbuild.qpmsbuild .
- name: submodules
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- git submodule init
- git submodule update
- name: build
image: qpms/buildenv/alpine/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local .
- make install
- export LIBRARY_PATH=$HOME/.local/lib
- python3 setup.py install --user
- cd examples/rectangular/modes
- pip3 install --user matplotlib #needed to run the example
- export LD_LIBRARY_PATH=$HOME/.local/lib
- ./01a_realfreq_svd.sh
---
kind: pipeline
type: docker
name: buildqpms-debian-preinstlibs
workspace:
path: /home/qpmsbuild/qpms
steps:
- name: chown
image: qpms/buildenv/debian/pkgdnumlib
pull: never
commands:
- chown -R qpmsbuild.qpmsbuild .
- name: submodules
image: qpms/buildenv/debian/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- git submodule init
- git submodule update
- name: build
image: qpms/buildenv/debian/pkgdnumlib
pull: never
user: qpmsbuild
commands:
- cmake -DCMAKE_INSTALL_PREFIX=/home/qpmsbuild/.local .
- make install
- export LIBRARY_PATH=$HOME/.local/lib
- python3 setup.py install --user
- pip3 install --user matplotlib #needed to run the examples
- export LD_LIBRARY_PATH=$HOME/.local/lib
- cd examples/rectangular/modes
- ./01a_realfreq_svd.sh
- cd -
- cd examples/hexagonal/modes
#- ./01a_realfreq_svd.sh
#- ./01_compute_modes.sh
#- ./02b_compute_disp_0M.sh
#- ./02_compute_disp.sh
#- ./02x_compute_disp.sh

25
.gitignore vendored
View File

@ -5,29 +5,4 @@
*.pdf
*.o
docs/*
qpms/qpms_c.c
qpms/cy*.c
CMakeCache.txt
CMakeFiles/*
faddeeva/*
qpms/CMakeFiles/*
qpms/libqpms.so
qpms/cmake_install.cmake
qpms_version.c
qpms.egg_info/*
dist/*
build/*
Makefile
CTestTestfile.cmake
amos/CMakeFiles/*
amos/Makefile
amos/amos_mangling.h
cmake_install.cmake
cython_debug/*
qpms.egg-info/*
tests/CmakeFiles/*
tests/cmake_install.cmake
tests/CMakeFiles/*

4
.gitmodules vendored
View File

@ -1,4 +0,0 @@
[submodule "camos"]
path = camos
url = https://codeberg.org/QPMS/zbessel.git
branch = purec

View File

@ -1,43 +0,0 @@
Overview of QPMS command line utilities
=======================================
The utilities are located in the `misc` directory. Run the
utility with `-h` argument to get more info.
Rectangular and square 2D lattices
----------------------------------
These scripts deal with simple 2D rectangular lattices,
finite or infinite, one scatterer per unit cell.
\f$ D_{2h} \f$ or \f$ D_{4h} \f$ symmetric adapted bases
are used where applicable.
### Finite lattices
* `finiterectlat-modes.py`: Search for resonances using Beyn's algorithm.
* `finiterectlat-scatter.py`: Plane wave scattering.
* `finiterectlat-constant-driving.py`: Rectangular array response to
a driving where a subset of particles are excited by basis VSWFs with the
same phase.
### Infinite lattices
* `rectlat_simple_modes.py`: Search for lattice modes using Beyn's algorithm.
* `infiniterectlat-k0realfreqsvd.py`:
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
Useful as a starting point in lattice mode search before using Beyn's algorithm.
* `infiniterectlat-scatter.py`: Plane wave scattering.
General 2D lattices
-------------------
### Infinite lattices
These can contain several scatterers per unit cell. Symmetry adapted bases currently not implemented.
* `lat2d_modes.py`: Search for lattice modes using Beyn's algorithm.
* `lat2d_realfreqsvd.py`:
Evaluate the lattice mode problem singular values at the Γ point for a real frequency interval.
Useful as a starting point in lattice mode search before using Beyn's algorithm.

View File

@ -1,17 +1,10 @@
cmake_minimum_required(VERSION 3.0.2)
option(QPMS_USE_FORTRAN_AMOS "Use the original AMOS Fortran libraries instead of the C ones" OFF)
if (QPMS_USE_FORTRAN_AMOS)
include(CMakeAddFortranSubdirectory)
endif (QPMS_USE_FORTRAN_AMOS)
include(version.cmake)
include(GNUInstallDirs)
project (QPMS)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
macro(use_c99)
if (CMAKE_VERSION VERSION_LESS "3.1")
if (CMAKE_C_COMPILER_ID STREQUAL "GNU")
@ -29,23 +22,10 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set (QPMS_VERSION_MAJOR 0)
#set (QPMS_VERSION_MINOR 3)
if (QPMS_USE_FORTRAN_AMOS)
cmake_add_fortran_subdirectory (amos
PROJECT amos
LIBRARIES amos
NO_EXTERNAL_INSTALL)
set(QPMS_AMOSLIB amos)
else (QPMS_USE_FORTRAN_AMOS)
set(CAMOS_BUILD_STATIC ON)
add_subdirectory (camos)
set(QPMS_AMOSLIB camos)
endif (QPMS_USE_FORTRAN_AMOS)
set(FADDEEVA_BUILD_STATIC ON)
add_subdirectory(faddeeva)
cmake_add_fortran_subdirectory (amos
PROJECT amos
LIBRARIES amos
NO_EXTERNAL_INSTALL)
add_subdirectory (qpms)

View File

@ -1,675 +0,0 @@
### GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc.
<https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
### Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program--to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
### TERMS AND CONDITIONS
#### 0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a "modified version" of
the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices" to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
#### 1. Source Code.
The "source code" for a work means the preferred form of the work for
making modifications to it. "Object code" means any non-source form of
a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same
work.
#### 2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.
#### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work's users, your or third parties' legal rights to forbid
circumvention of technological measures.
#### 4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
#### 5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
- a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
- b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to "keep intact all notices".
- c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
- d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
#### 6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:
- a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
- b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.
- c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
- d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
- e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
#### 7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:
- a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
- b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
- c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
- d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or
- e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
- f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.
#### 8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
#### 9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
#### 10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
#### 11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
#### 12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.
#### 13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
#### 14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free
Software Foundation.
If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy's public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
#### 15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.
#### 16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
#### 17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
### How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state
the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands \`show w' and \`show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see <https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -51,7 +51,7 @@ PROJECT_BRIEF = "Electromagnetic multiple scattering library and toolki
# and the maximum width should not exceed 200 pixels. Doxygen will copy the logo
# to the output directory.
PROJECT_LOGO = farfield.png
PROJECT_LOGO =
# The OUTPUT_DIRECTORY tag is used to specify the (relative or absolute) path
# into which the generated documentation will be written. If a relative path is
@ -753,7 +753,7 @@ WARN_LOGFILE =
# spaces.
# Note: If this tag is empty the current directory is searched.
INPUT = qpms notes misc finite_systems.md MIRRORS.md CLIUTILS.md README.md README.Triton.md finite_systems.md lattices.md TODO.md
INPUT = qpms notes finite_systems.md README.md README.Triton.md finite_systems.md lattices.md TODO.md
# This tag can be used to specify the character encoding of the source files
# that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
@ -773,7 +773,7 @@ INPUT_ENCODING = UTF-8
# *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf,
# *.qsf, *.as and *.js.
FILE_PATTERNS =
FILE_PATTERNS =
# The RECURSIVE tag can be used to specify whether or not subdirectories should
# be searched for input files as well.
@ -1462,7 +1462,7 @@ MATHJAX_FORMAT = HTML-CSS
# The default value is: http://cdn.mathjax.org/mathjax/latest.
# This tag requires that the tag USE_MATHJAX is set to YES.
MATHJAX_RELPATH = https://uslugi.necada.org/js/mathjax
MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
# The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
# extension names that should be enabled during MathJax rendering. For example

View File

@ -1,14 +0,0 @@
QPMS source code mirrors
========================
QPMS source code is available at several locations; in all of the following,
upstream `master` branch is kept up-to-date. Various development branches
are not necessarily pushed everywhere (and they should be considered
unstable in the sense that rebases and forced pushes are possible).
mirror | note | provider | backend
----------------------------------------------- | ----------------------- | ------------------------------------------------- | ------
<https://repo.or.cz/qpms.git> | primary public upstream | [repo.or.cz](https://repo.or.cz/) | girocco
<https://codeberg.org/QPMS/qpms> | | [Codeberg](https://codeberg.org) | gitea
<https://git.piraattipuolue.fi/QPMS/qpms.git> | | [Pirate Party Finland](https://piraattipuolue.fi) | gitea
<https://version.aalto.fi/gitlab/qpms/qpms.git> | | [Aalto University](https://aalto.fi) | gitlab

127
README.md
View File

@ -1,14 +1,10 @@
[![Build Status](https://drone.perkele.eu/api/badges/QPMS/qpms/status.svg)](https://drone.perkele.eu/QPMS/qpms)
QPMS README
===========
[QPMS][homepage] (standing for QPMS Photonic Multiple Scattering)
is a toolkit for frequency-domain simulations of photonic systems
QPMS is a toolkit for frequency-domain simulations of photonic systems
consisting of compact objects (particles) inside a homogeneous medium. Scattering
properties of the individual particles are described by their T-matrices
(which can be obtained using one of the built-in generators or
e.g. with the `scuff-tmatrix` tool from
(which can be obtained e.g. with the `scuff-tmatrix` tool from
the [SCUFF-EM] suite).
QPMS handles the multiple scattering of electromagnetic radiation between
@ -16,39 +12,26 @@ the particles. The system can consist either of a finite number of particles
or an infinite number of periodically arranged lattices (with finite number
of particles in a single unit cell).
Features
========
Finite systems
--------------
* Computing multipole excitations and fields scattered from nanoparticle
* Computing multipole excitations *and fields (TODO)* scattered from nanoparticle
clusters illuminated by plane, spherical or *cylindrical (TODO)* waves.
* Finding eigenmodes (optical resonances).
* Calculating cross sections.
* Finding eigenmodes.
* *Calculating cross sections (TODO).*
* Reducing numerical complexity of the computations by exploiting
symmetries of the cluster (decomposition to irreducible representations).
Infinite systems (lattices)
---------------------------
* 2D-periodic systems with arbitrary unit cell geometry supported. (TODO 1D and 3D.)
* Computing multipole excitations and fields scattered from nanoparticle
* 2D-periodic systems supported. (TODO 1D and 3D.)
* *Calculation of transmission and reflection properties (TODO).*
* Finding eigenmodes and calculating dispersion relations.
* Calculation of the scattered fields.
* *Calculation of total transmission and reflection properties (TODO).*
* *Reducing numerical complexity of the computations by exploiting
symmetries of the lattice (decomposition to irreducible representations) (in development).*
Getting the code
================
The codebase is available at the main upstream public repository
<https://repo.or.cz/qpms.git> or any of the [maintained mirrors][MIRRORS].
Just clone the repository with `git` and proceed to the installation instructions
below.
* *Calculation of far-field radiation patterns of an excited array (TODO).*
* Reducing numerical complexity of the computations by exploiting
symmetries of the lattice (decomposition to irreducible representations).
Installation
@ -64,16 +47,7 @@ you can [get the source and compile it yourself][GSL].
You also need a fresh enough version of [cmake][].
QPMS uses a C version of the Amos library for calculating Bessel function
from a submodule. Before proceeding with running `cmake`, the submodules
need to be downloaded first (in the QPMS source root directory):
```{.sh}
git submodule init
git submodule update
```
After GSL is installed and submodules updated, you can install qpms to your local python library using
After GSL is installed, you can install qpms to your local python library using
```{.sh}
cmake -DCMAKE_INSTALL_PREFIX=${YOUR_PREFIX} .
@ -92,21 +66,13 @@ Special care might need to be taken when installing QPMS in cluster environments
Specific installation instructions for Aalto University's Triton cluster
can be found in a [separate document][TRITON-README].
Instructions for installation on Android-based devices are
in [another document][INSTALL-ANDROID].
Documentation
=============
[QPMS documentation][homepage] is a work in progress. Most of the newer code
is documented using [doxygen][] comments. Documentation generated for the
upstream version is hosted on the QPMS homepage <https://qpms.necada.org>.
To build the documentation yourself,
just run
Documentation of QPMS is a work in progress. Most of the newer code
is documented using [doxygen][] comments. To build the documentation, just run
`doxygen`
in the QPMS source root directory; the documentation will then be found in
in the root directory; the documentation will then be found in
`docs/html/index.html`.
Of course, the prerequisite of this is having doxygen installed.
@ -118,77 +84,14 @@ under root.
Tutorials
---------
* [Infinite system (lattice) tutorial][tutorial-infinite]
* [Finite system tutorial][tutorial-finite]
See also the examples directory in the source repository.
Command line utilities
----------------------
* [Overview of the Python command line utilities][cliutils]
Acknowledgments
================
This software has been developed in the [Quantum Dynamics research group][QD],
Aalto University, Finland. If you use the code in your work, please cite
**M. Nečada and P. Törmä, Multiple-scattering T-matrix simulations for nanophotonics: symmetries and periodic lattices, [arXiv: 2006.12968][lepaper] (2020)**
in your publications, presentations, and similar.
Please also have a look at other publications by the group
(google scholar Päivi Törmä), they may be useful for your work as well.
Bug reports
===========
If you believe that some parts of QPMS behave incorrectly, please mail
a bug report to [marek@necada.org][authormail]. To ensure that your message is not
considered spam, please start the subject line with `QPMS`.
If you were able to fix a bug yourself, please include the patch as well,
see below.
Contributions
=============
Contributions to QPMS are welcome, be it bug fixes, improvements to the
documentation, code quality, or new features.
You can send patches prepared using the
[`git format-patch`](https://git-scm.com/docs/git-format-patch) tool
to [marek@necada.org][authormail].
If you plan to contribute with major changes to the codebase, it is
recommended to discuss that first (see the contact information below).
Contact & discussion
====================
You can contact the main author e.g. via [e-mail][authormail]
or [Telegram](https://t.me/necadam).
You are also warmly welcome to the [QPMS user chat][telegramchat]
in Telegram!
[homepage]: https://qpms.necada.org
[SCUFF-EM]: https://homerreid.github.io/scuff-em-documentation/
[OpenBLAS]: https://www.openblas.net/
[GSL]: https://www.gnu.org/software/gsl/
[cmake]: https://cmake.org
[TRITON-README]: README.Triton.md
[INSTALL-ANDROID]: notes/INSTALL_ANDROID.md
[tutorial-finite]: finite_systems.md
[tutorial-infinite]: lattices.md
[doxygen]: http://doxygen.nl/
[QD]: https://www.aalto.fi/en/department-of-applied-physics/quantum-dynamics-qd
[lepaper]: https://arxiv.org/abs/2006.12968
[telegramchat]: https://t.me/QPMScattering
[authormail]: mailto:marek@necada.org
[cliutils]: CLIUTILS.md
[MIRRORS]: MIRRORS.md

29
TODO.md
View File

@ -1,12 +1,11 @@
TODO list before 1.0 release
============================
TODO list before public release
===============================
- Tests!
- Docs!
- Cross section calculations. (Done in some Python scripts.)
- Field calculations. (Partly done, needs more testing.)
* Also test periodic vs. nonperiodic consistence (big finite lattice + absorbing medium vs. infinite lattice + absorbing medium).
- Complex frequencies, n's, k's. (Mostly done.)
- Cross section calculations.
- Field calculations.
- Complex frequencies, n's, k's.
- Transforming point (meta)generators.
- Check whether moble's quaternions and my
quaternions give the same results in tmatrices.py
@ -25,12 +24,11 @@ TODO list before 1.0 release
* As a description of a T-matrix / particle metadata.
- Nice CLI for all general enough utilities.
- Remove legacy code.
- Split `qpms_c.pyx`.
- Split qpms_c.pyx.
- Reduce compiler warnings.
- Serialisation (saving, loading) of `ScatteringSystem` and other structures.
- Python exceptions instead of hard crashes in the C library where possible.
- Scatsystem init sometimes fail due to rounding errors and hardcoded absolute tolerance
in the `qpms_tmatrix_isclose()` call.
in the qpms_tmatrix_isclose() call.
- Prefix all identifiers. Maybe think about a different prefix than qpms?
- Consistent indentation and style overall.
- Rewrite the parallelized translation matrix, mode problem matrix generators
@ -41,16 +39,3 @@ Nice but less important features
- Static, thread-safe caches of constant coefficients + API without the current "calculators".
Optimisations
-------------
- Leaving out the irrelevant elements if a "rectangular" block of the translations matrix is needed.
- Ewald sums with "non-parallel" shifts (are about 20 times slower than the purely parallel ones).
- Reusing intermediate results (profiling needed)
* Bessel, Legendre functions (see also branch `finite_lattice_speedup`)
* Lattice points (sorting and scaling)
* Γ/Δ functions (for periodic lattices)
- More parallelisation.
- Possibly pre-calculation of the (precise) coefficients in Bessel and Legendre functions (using gmp)
- Asymptotic approximations of the Bessel functions for far fields.

View File

@ -1,30 +0,0 @@
#ifndef CAMOS_H_
#define CAMOS_H_
#include "amos.h"
// TODO what about all the INTEGER_t and DOUBLE_PRECISION_t?
static inline int camos_zbesh(double zr, double zi, double fnu, int kode, int m,
int n, double *cyr, double *cyi, int *nz) {
int ierr;
amos_zbesh(&zr, &zi, &fnu, &kode, &m, &n, cyr, cyi, nz, &ierr);
return ierr;
}
static inline int camos_zbesj(double zr, double zi, double fnu, int kode, int n, double *cyr,
double *cyi, int *nz) {
int ierr;
double cwrkr[n], cwrki[n];
amos_zbesj(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, &ierr);
return ierr;
}
static inline int camos_zbesy(double zr, double zi, double fnu, int kode, int n, double *cyr,
double *cyi, int *nz, double *cwrkr, double *cwrki) {
int ierr;
amos_zbesy(&zr, &zi, &fnu, &kode, &n, cyr, cyi, nz, cwrkr, cwrki, &ierr);
return ierr;
}
#endif // CAMOS_H_

1
camos

@ -1 +0,0 @@
Subproject commit 19e7ae82e7e0b436bd273557a87d288f8f338221

View File

@ -1,7 +0,0 @@
#!/bin/sh
DP=Dockerfile_parts
# "Build environment" Dockerfiles
cat >Dockerfile.benv.debian.bnl ${DP}/00_common.debian ${DP}/01_numlibs.built
cat >Dockerfile.benv.debian.pnl ${DP}/00_common.debian ${DP}/01_numlibs.debian.pkgd
cat >Dockerfile.benv.alpine.bnl ${DP}/00_common.alpine ${DP}/01_numlibs.built
cat >Dockerfile.benv.alpine.pnl ${DP}/00_common.alpine ${DP}/01_numlibs.alpine.pkgd

View File

@ -1,5 +0,0 @@
#!/bin/sh
docker build -t qpms/buildenv/debian/builtnumlib -f Dockerfile.benv.debian.bnl .
docker build -t qpms/buildenv/debian/pkgdnumlib -f Dockerfile.benv.debian.pnl .
docker build -t qpms/buildenv/alpine/builtnumlib -f Dockerfile.benv.alpine.bnl .
docker build -t qpms/buildenv/alpine/pkgdnumlib -f Dockerfile.benv.alpine.pnl .

View File

@ -1,5 +0,0 @@
FROM alpine:latest AS commondeps
RUN apk update \
&& apk add cmake python3-dev py3-pip gcc g++ wget git make libc-dev bc \
&& adduser -D qpmsbuild

View File

@ -1,6 +0,0 @@
FROM debian:stable AS commondeps
RUN apt-get update \
&& apt-get -y install --no-install-recommends build-essential cmake python3 python3-pip git wget python3-dev bc \
&& apt-get clean \
&& useradd -m qpmsbuild

View File

@ -1,3 +0,0 @@
FROM commondeps AS numlibs
# openblas-dev adds gfortran :(
RUN apk add openblas-dev gsl-dev

View File

@ -1,16 +0,0 @@
FROM commondeps AS buildopenblas
USER qpmsbuild
RUN cd && git clone --depth 1 https://github.com/xianyi/OpenBLAS.git \
&& cd OpenBLAS && make \
&& make install PREFIX=$HOME/.local/ \
&& make clean \
&& cd .. && rm -rf OpenBLAS
FROM buildopenblas AS numlibs
USER qpmsbuild
RUN cd && wget https://ftp.gnu.org/gnu/gsl/gsl-latest.tar.gz \
&& tar xf gsl-latest.tar.gz \
&& cd $( tar tf gsl-latest.tar.gz | head -n 1 ) \
&& ./configure --prefix=$HOME/.local \
&& make && make install && make clean \
&& cd .. && rm -rf $OLDPWD gsl-latest.tar.gz

View File

@ -1,4 +0,0 @@
FROM commondeps AS numlibs
RUN apt-get -y install --no-install-recommends libopenblas-dev libgsl-dev liblapacke-dev \
&& apt-get clean

View File

@ -1,12 +0,0 @@
FROM numlibs AS buildqpms
USER qpmsbuild
ENV LD_LIBRARY_PATH /home/qpmsbuild/.local/lib
ENV LIBRARY_PATH /home/qpmsbuild/.local/lib
ENV C_INCLUDE_PATH /home/qpmsbuild/.local/include
RUN cd && git clone --depth 1 https://repo.or.cz/qpms.git \
&& cd qpms && git submodule init && git submodule update
RUN cd ~/qpms && cmake -DCMAKE_INSTALL_PREFIX=$HOME/.local . \
&& make \
&& make install
RUN cd ~/qpms && python3 setup.py install --user

View File

@ -1 +0,0 @@
../.drone.yml

View File

@ -1,284 +0,0 @@
# - Returns a version string from Git
#
# These functions force a re-configure on each git commit so that you can
# trust the values of the variables in your build system.
#
# get_git_head_revision(<refspecvar> <hashvar> [ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR])
#
# Returns the refspec and sha hash of the current head revision
#
# git_describe(<var> [<additional arguments to git describe> ...])
#
# Returns the results of git describe on the source tree, and adjusting
# the output so that it tests false if an error occurs.
#
# git_describe_working_tree(<var> [<additional arguments to git describe> ...])
#
# Returns the results of git describe on the working tree (--dirty option),
# and adjusting the output so that it tests false if an error occurs.
#
# git_get_exact_tag(<var> [<additional arguments to git describe> ...])
#
# Returns the results of git describe --exact-match on the source tree,
# and adjusting the output so that it tests false if there was no exact
# matching tag.
#
# git_local_changes(<var>)
#
# Returns either "CLEAN" or "DIRTY" with respect to uncommitted changes.
# Uses the return code of "git diff-index --quiet HEAD --".
# Does not regard untracked files.
#
# Requires CMake 2.6 or newer (uses the 'function' command)
#
# Original Author:
# 2009-2020 Ryan Pavlik <ryan.pavlik@gmail.com> <abiryan@ryand.net>
# http://academic.cleardefinition.com
#
# Copyright 2009-2013, Iowa State University.
# Copyright 2013-2020, Ryan Pavlik
# Copyright 2013-2020, Contributors
# SPDX-License-Identifier: BSL-1.0
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
if(__get_git_revision_description)
return()
endif()
set(__get_git_revision_description YES)
# We must run the following at "include" time, not at function call time,
# to find the path to this module rather than the path to a calling list file
get_filename_component(_gitdescmoddir ${CMAKE_CURRENT_LIST_FILE} PATH)
# Function _git_find_closest_git_dir finds the next closest .git directory
# that is part of any directory in the path defined by _start_dir.
# The result is returned in the parent scope variable whose name is passed
# as variable _git_dir_var. If no .git directory can be found, the
# function returns an empty string via _git_dir_var.
#
# Example: Given a path C:/bla/foo/bar and assuming C:/bla/.git exists and
# neither foo nor bar contain a file/directory .git. This wil return
# C:/bla/.git
#
function(_git_find_closest_git_dir _start_dir _git_dir_var)
set(cur_dir "${_start_dir}")
set(git_dir "${_start_dir}/.git")
while(NOT EXISTS "${git_dir}")
# .git dir not found, search parent directories
set(git_previous_parent "${cur_dir}")
get_filename_component(cur_dir "${cur_dir}" DIRECTORY)
if(cur_dir STREQUAL git_previous_parent)
# We have reached the root directory, we are not in git
set(${_git_dir_var}
""
PARENT_SCOPE)
return()
endif()
set(git_dir "${cur_dir}/.git")
endwhile()
set(${_git_dir_var}
"${git_dir}"
PARENT_SCOPE)
endfunction()
function(get_git_head_revision _refspecvar _hashvar)
_git_find_closest_git_dir("${CMAKE_CURRENT_SOURCE_DIR}" GIT_DIR)
if("${ARGN}" STREQUAL "ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR")
set(ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR TRUE)
else()
set(ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR FALSE)
endif()
if(NOT "${GIT_DIR}" STREQUAL "")
file(RELATIVE_PATH _relative_to_source_dir "${CMAKE_SOURCE_DIR}"
"${GIT_DIR}")
if("${_relative_to_source_dir}" MATCHES "[.][.]" AND NOT ALLOW_LOOKING_ABOVE_CMAKE_SOURCE_DIR)
# We've gone above the CMake root dir.
set(GIT_DIR "")
endif()
endif()
if("${GIT_DIR}" STREQUAL "")
set(${_refspecvar}
"GITDIR-NOTFOUND"
PARENT_SCOPE)
set(${_hashvar}
"GITDIR-NOTFOUND"
PARENT_SCOPE)
return()
endif()
# Check if the current source dir is a git submodule or a worktree.
# In both cases .git is a file instead of a directory.
#
if(NOT IS_DIRECTORY ${GIT_DIR})
# The following git command will return a non empty string that
# points to the super project working tree if the current
# source dir is inside a git submodule.
# Otherwise the command will return an empty string.
#
execute_process(
COMMAND "${GIT_EXECUTABLE}" rev-parse
--show-superproject-working-tree
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
OUTPUT_VARIABLE out
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT "${out}" STREQUAL "")
# If out is empty, GIT_DIR/CMAKE_CURRENT_SOURCE_DIR is in a submodule
file(READ ${GIT_DIR} submodule)
string(REGEX REPLACE "gitdir: (.*)$" "\\1" GIT_DIR_RELATIVE
${submodule})
string(STRIP ${GIT_DIR_RELATIVE} GIT_DIR_RELATIVE)
get_filename_component(SUBMODULE_DIR ${GIT_DIR} PATH)
get_filename_component(GIT_DIR ${SUBMODULE_DIR}/${GIT_DIR_RELATIVE}
ABSOLUTE)
set(HEAD_SOURCE_FILE "${GIT_DIR}/HEAD")
else()
# GIT_DIR/CMAKE_CURRENT_SOURCE_DIR is in a worktree
file(READ ${GIT_DIR} worktree_ref)
# The .git directory contains a path to the worktree information directory
# inside the parent git repo of the worktree.
#
string(REGEX REPLACE "gitdir: (.*)$" "\\1" git_worktree_dir
${worktree_ref})
string(STRIP ${git_worktree_dir} git_worktree_dir)
_git_find_closest_git_dir("${git_worktree_dir}" GIT_DIR)
set(HEAD_SOURCE_FILE "${git_worktree_dir}/HEAD")
endif()
else()
set(HEAD_SOURCE_FILE "${GIT_DIR}/HEAD")
endif()
set(GIT_DATA "${CMAKE_CURRENT_BINARY_DIR}/CMakeFiles/git-data")
if(NOT EXISTS "${GIT_DATA}")
file(MAKE_DIRECTORY "${GIT_DATA}")
endif()
if(NOT EXISTS "${HEAD_SOURCE_FILE}")
return()
endif()
set(HEAD_FILE "${GIT_DATA}/HEAD")
configure_file("${HEAD_SOURCE_FILE}" "${HEAD_FILE}" COPYONLY)
configure_file("${_gitdescmoddir}/GetGitRevisionDescription.cmake.in"
"${GIT_DATA}/grabRef.cmake" @ONLY)
include("${GIT_DATA}/grabRef.cmake")
set(${_refspecvar}
"${HEAD_REF}"
PARENT_SCOPE)
set(${_hashvar}
"${HEAD_HASH}"
PARENT_SCOPE)
endfunction()
function(git_describe _var)
if(NOT GIT_FOUND)
find_package(Git QUIET)
endif()
get_git_head_revision(refspec hash)
if(NOT GIT_FOUND)
set(${_var}
"GIT-NOTFOUND"
PARENT_SCOPE)
return()
endif()
if(NOT hash)
set(${_var}
"HEAD-HASH-NOTFOUND"
PARENT_SCOPE)
return()
endif()
# TODO sanitize
#if((${ARGN}" MATCHES "&&") OR
# (ARGN MATCHES "||") OR
# (ARGN MATCHES "\\;"))
# message("Please report the following error to the project!")
# message(FATAL_ERROR "Looks like someone's doing something nefarious with git_describe! Passed arguments ${ARGN}")
#endif()
#message(STATUS "Arguments to execute_process: ${ARGN}")
execute_process(
COMMAND "${GIT_EXECUTABLE}" describe --tags --always ${hash} ${ARGN}
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
RESULT_VARIABLE res
OUTPUT_VARIABLE out
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT res EQUAL 0)
set(out "${out}-${res}-NOTFOUND")
endif()
set(${_var}
"${out}"
PARENT_SCOPE)
endfunction()
function(git_describe_working_tree _var)
if(NOT GIT_FOUND)
find_package(Git QUIET)
endif()
if(NOT GIT_FOUND)
set(${_var}
"GIT-NOTFOUND"
PARENT_SCOPE)
return()
endif()
execute_process(
COMMAND "${GIT_EXECUTABLE}" describe --dirty ${ARGN}
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
RESULT_VARIABLE res
OUTPUT_VARIABLE out
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT res EQUAL 0)
set(out "${out}-${res}-NOTFOUND")
endif()
set(${_var}
"${out}"
PARENT_SCOPE)
endfunction()
function(git_get_exact_tag _var)
git_describe(out --exact-match ${ARGN})
set(${_var}
"${out}"
PARENT_SCOPE)
endfunction()
function(git_local_changes _var)
if(NOT GIT_FOUND)
find_package(Git QUIET)
endif()
get_git_head_revision(refspec hash)
if(NOT GIT_FOUND)
set(${_var}
"GIT-NOTFOUND"
PARENT_SCOPE)
return()
endif()
if(NOT hash)
set(${_var}
"HEAD-HASH-NOTFOUND"
PARENT_SCOPE)
return()
endif()
execute_process(
COMMAND "${GIT_EXECUTABLE}" diff-index --quiet HEAD --
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
RESULT_VARIABLE res
OUTPUT_VARIABLE out
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(res EQUAL 0)
set(${_var}
"CLEAN"
PARENT_SCOPE)
else()
set(${_var}
"DIRTY"
PARENT_SCOPE)
endif()
endfunction()

View File

@ -1,43 +0,0 @@
#
# Internal file for GetGitRevisionDescription.cmake
#
# Requires CMake 2.6 or newer (uses the 'function' command)
#
# Original Author:
# 2009-2010 Ryan Pavlik <rpavlik@iastate.edu> <abiryan@ryand.net>
# http://academic.cleardefinition.com
# Iowa State University HCI Graduate Program/VRAC
#
# Copyright 2009-2012, Iowa State University
# Copyright 2011-2015, Contributors
# Distributed under the Boost Software License, Version 1.0.
# (See accompanying file LICENSE_1_0.txt or copy at
# http://www.boost.org/LICENSE_1_0.txt)
# SPDX-License-Identifier: BSL-1.0
set(HEAD_HASH)
file(READ "@HEAD_FILE@" HEAD_CONTENTS LIMIT 1024)
string(STRIP "${HEAD_CONTENTS}" HEAD_CONTENTS)
if(HEAD_CONTENTS MATCHES "ref")
# named branch
string(REPLACE "ref: " "" HEAD_REF "${HEAD_CONTENTS}")
if(EXISTS "@GIT_DIR@/${HEAD_REF}")
configure_file("@GIT_DIR@/${HEAD_REF}" "@GIT_DATA@/head-ref" COPYONLY)
else()
configure_file("@GIT_DIR@/packed-refs" "@GIT_DATA@/packed-refs" COPYONLY)
file(READ "@GIT_DATA@/packed-refs" PACKED_REFS)
if(${PACKED_REFS} MATCHES "([0-9a-z]*) ${HEAD_REF}")
set(HEAD_HASH "${CMAKE_MATCH_1}")
endif()
endif()
else()
# detached HEAD
configure_file("@GIT_DIR@/HEAD" "@GIT_DATA@/head-ref" COPYONLY)
endif()
if(NOT HEAD_HASH)
file(READ "@GIT_DATA@/head-ref" HEAD_HASH LIMIT 1024)
string(STRIP "${HEAD_HASH}" HEAD_HASH)
endif()

View File

@ -1,23 +0,0 @@
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

View File

@ -1,36 +0,0 @@
#!/usr/bin/env python3
from qpms import TMatrixGenerator, BaseSpec, eV, hbar
import numpy as np
import sys
errors = 0
def tmg_diagonal_fun(tmatrix, omega):
'''
Example of a python function used as a custom T-matrix generator
It receives a CTMatrix argument with pre-filled BaseSpec
(in tmatrix.spec) and angular frequency.
It has to fill in the T-matrix elements tmatrix[...]
(a numpy array of shape (len(tmatrix.spec),len(tmatrix.spec)))
and return zero (on success) or other integral value on error.
Note that this in justa an example of using the API,
not supposed to be anything physical.
'''
l = tmatrix.spec.l()
tmatrix[...] = np.diag(1./l**2)
return 0
# Wrap the function as an actual TMatrixGenerator
tmg_diagonal = TMatrixGenerator(tmg_diagonal_fun)
bspec = BaseSpec(lMax=2)
tmatrix = tmg_diagonal(bspec, (2.0+.01j) * eV/hbar)
errors += np.sum(tmatrix[...] != np.diag(1./bspec.l()**2))
sys.exit(errors)

View File

@ -1,38 +0,0 @@
#!/bin/bash
echo 'scale=20;pi=3.14159265358979323846;' > bc_env
export BC_ENV_ARGS="bc_env"
# We put those into bc, which does not understant exponential notation
SEPARATION_nm=576
# Particle positions within unit cell
export P1X_nm=0
export P1Y_nm=$(bc <<< ${SEPARATION_nm}/2)
export P2X_nm=0
export P2Y_nm=-$P1Y_nm
# Lattice vectors
export A1X_nm=$(bc <<< ${SEPARATION_nm}'*sqrt(3)')
export A1Y_nm=0
export A2X_nm=$(bc <<< ${SEPARATION_nm}'*sqrt(3)/2')
export A2Y_nm=$(bc <<< ${SEPARATION_nm}'*3/2')
# Reciprocal lattice vectors
export B1X_nmi=$(bc <<< '2*pi/sqrt(3)/'${SEPARATION_nm})
export B1Y_nmi=$(bc <<< '-2*pi/3/'${SEPARATION_nm})
export B2X_nmi=0
export B2Y_nmi=$(bc <<< '4*pi/3/'${SEPARATION_nm})
# a K-point coordinates
export KPOINTX_nmi=$(bc <<< '4*pi/3/sqrt(3)'/${SEPARATION_nm})
export KPOINTY_nmi=0.0 #$(bc <<< '4*pi/3/sqrt(3)'/${SEPARATION_nm})
# a M-point coordinates
export MPOINTX_nmi=0.0
export MPOINTY_nmi=$(bc <<< '2*pi/3'/${SEPARATION_nm})
export RADIUS_nm=50
export HEIGHT_nm=50
export METAL=Au
export BG_REFINDEX=1.52

View File

@ -1,18 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
-d -3 \
-t 0.01 \
-c 250 \
-P

View File

@ -1,16 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
${MISCDIR}/lat2d_realfreqsvd.py \
-B $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
-F 1.3 0.001 1.5 \
-P

View File

@ -1,22 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 -2 -3 -4 ; do
for coeff in $(seq 0.80 0.01 1.50 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
-d $bbb \
-t 1e13 \
-T 0.2 \
-c 250
done
done

View File

@ -1,24 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 -2 -3 -4 ; do
for coeff in $(seq 0.00 0.01 1.00 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${MPOINTX_nmi}*${coeff})e9 s$(bc <<< ${MPOINTY_nmi}*${coeff})e9 \
-d $bbb \
-t 1e12 \
-T 0.3 \
-c 250 \
-P
done
done

View File

@ -1,24 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 2 ; do
for coeff in $(seq 0.80 0.01 2.00 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
-d -$bbb \
-t 1e12 \
-T 0.2 \
-c 250 \
-P
done
done

View File

@ -1 +0,0 @@
scale=20;pi=3.14159265358979323846;

View File

@ -1,37 +0,0 @@
#!/bin/bash
# Common parameters for a rectangular array
# N.B. We put those into bc, which does not understant exponential notation
export PX_nm=375
export PY_nm=375
export RADIUS_nm=30
export HEIGHT_nm=30
export METAL=Ag
export BG_REFINDEX=1.52
# Setup bc
echo 'scale=20;pi=3.14159265358979323846;' > bc_env
export BC_ENV_ARGS="bc_env"
# We have only one particle per unit cell here
export P1X_nm=0
export P1Y_nm=0
# Lattice vectors (for the general scripts)
export A1X_nm=${PX_nm}
export A1Y_nm=0
export A2X_nm=0
export A2Y_nm=${PY_nm}
# Reciprocal lattice vectors
export B1X_nmi=$(bc <<< '1/'${PX_nm})
export B1Y_nmi=0
export B2X_nmi=0
export B2Y_nmi=$(bc <<< '1/'${PY_nm})

View File

@ -1,18 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s${KPOINTX_nmi}e9 s${KPOINTY_nmi}e9 \
-d -3 \
-t 0.01 \
-c 250 \
-P

View File

@ -1,17 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
# try several lMaxes
${MISCDIR}/lat2d_realfreqsvd.py \
-B $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k 0 0 \
-F 2.001 0.001 2.250 \
-P

View File

@ -1,15 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for LMAX in 1 2 3 ; do # try several cutoffs
${MISCDIR}/infiniterectlat-k0realfreqsvd.py \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L $LMAX -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-F 2.001 0.001 2.250 \
-P
done

View File

@ -1,22 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 -2 -3 -4 ; do
for coeff in $(seq 0.80 0.01 1.50 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${KPOINTX_nmi}*${coeff})e9 s$(bc <<< ${KPOINTY_nmi}*${coeff})e9 \
-d $bbb \
-t 1e13 \
-T 0.2 \
-c 250
done
done

View File

@ -1,24 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 -2 -3 -4 ; do
for coeff in $(seq 0.00 0.01 1.00 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-p s${P2X_nm}e-9 s${P2Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${MPOINTX_nmi}*${coeff})e9 s$(bc <<< ${MPOINTY_nmi}*${coeff})e9 \
-d $bbb \
-t 1e12 \
-T 0.3 \
-c 250 \
-P
done
done

View File

@ -1,21 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for bbb in 1 -2 2 -3 ; do
for coeff in $(seq -0.200 0.010 0.200 | sed -e s/,/./g) ; do
${MISCDIR}/lat2d_modes.py \
-n $BG_REFINDEX \
-b s${A1X_nm}e-9 s${A1Y_nm}e-9 \
-b s${A2X_nm}e-9 s${A2Y_nm}e-9 \
-p s${P1X_nm}e-9 s${P1Y_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
-k s$(bc <<< ${B1X_nmi}*${coeff})e9 s$(bc <<< ${B1Y_nmi}*${coeff})e9 \
-d $bbb \
-T 0.2 \
-c 250
done
done

File diff suppressed because one or more lines are too long

View File

@ -1 +0,0 @@
../modes/00_params.sh

View File

@ -1,19 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 0 1; do
${MISCDIR}/infiniterectlat-scatter.py \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.015:0.015|201" \
--phi 0 \
--psi $PSI \
--chi 0 \
-f "s2.110:2.230|100" \
-P
done

View File

@ -1,19 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 1; do
${MISCDIR}/finiterectlat-scatter.py \
--size 5 5\
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.05:0.05|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-f 2.15
done

View File

@ -1,19 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 0 1; do
${MISCDIR}/infiniterectlat-scatter.py \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.05:0.05|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-P \
-f 2.15
done

View File

@ -1,25 +0,0 @@
#!/bin/bash
##SBATCH --mem=50000
##SBATCH -c 12
##SBATCH -t 14:00:00
##SBATCH -p batch
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 0 1; do
${MISCDIR}/finiterectlat-scatter.py \
--size 140 100 \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.05:0.05|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-o 140x100.npz -O 140x100.pdf \
-P \
-f 2.15
done

View File

@ -1,25 +0,0 @@
#!/bin/bash
##SBATCH --mem=30000
##SBATCH -c 12
##SBATCH -t 14:00:00
##SBATCH -p batch
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 1; do
${MISCDIR}/finiterectlat-scatter.py \
--size 100 100 \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.05:0.05|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-o 100x100.npz -O 100x100.pdf \
-P \
-f 2.15
done

View File

@ -1,25 +0,0 @@
#!/bin/bash
##SBATCH --mem=50000
##SBATCH -c 12
##SBATCH -t 14:00:00
##SBATCH -p batch
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 0 1; do
${MISCDIR}/finiterectlat-scatter.py \
--size 140 140 \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 2 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.05:0.05|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-o 140x140.npz -O 140x140.pdf \
-P \
-f 2.15
done

View File

@ -1,21 +0,0 @@
#!/bin/bash
SCRIPTDIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
MISCDIR=../../../misc
source ${SCRIPTDIR}/00_params.sh
for PSI in 1; do
${MISCDIR}/finiterectlat-scatter.py \
--size 20 20 \
-B $BG_REFINDEX \
-p ${PX_nm}e-9 ${PY_nm}e-9 \
-L 3 -m $METAL -r ${RADIUS_nm}e-9 -H ${HEIGHT_nm}e-9 \
--theta "s-0.005:0.005|101" \
--phi 0 \
--psi $PSI \
--chi 0 \
-P \
-f "s2.150:2.180|100" \
done

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,19 +0,0 @@
#!/bin/bash
#SBATCH --mem=200
#SBATCH -t 30:00
#SBATCH -c 4
#SBATCH -p short-ivb
#SBATCH --array=0-250
cat $0
contour_points=410
#radii_nm=(`seq 80 1 150`)
radii_nm=(`seq 50 1 300`)
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
for lMax in $(seq 1 5); do
srun rectlat_simple_modes.py -p 580e-9 -m '4+0.7j' -r ${radius_nm}e-9 -k 0 0 --kpi -n 1.52 -L lMax -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points}
done

View File

@ -1,13 +0,0 @@
#!/bin/bash
kx=0.0
contour_points=410
radii_nm=(`seq 50 1 300`)
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
for lMax in $(seq 1 5) ; do
for radius_nm in $(seq 50 1 300) ; do
rectlat_simple_modes.py -p 580e-9 -m 'Au' -r ${radius_nm}e-9 -k $kx 0 --kpi -n 1.52 -L $lMax -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points} --lMax-extend 10
done
done

View File

@ -1,11 +0,0 @@
#!/bin/bash
kx=0.0
contour_points=410
radii_nm=(`seq 50 1 300`)
radius_nm=${radii_nm[$SLURM_ARRAY_TASK_ID]}
for radius_nm in $(seq 50 1 300) ; do
rectlat_simple_modes.py -p 580e-9 -m 'Au' -r ${radius_nm}e-9 -k $kx 0 --kpi -n 1.52 -L 1 -t 1e11 -b -2 -f 0.1 -i 1. -T .3 -N ${contour_points}
done

View File

@ -1,300 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import re\n",
"import numpy as np\n",
"import matplotlib\n",
"from matplotlib import pyplot as plt\n",
"from scipy.constants import hbar, e as eV, c\n",
"eh = eV/hbar\n",
"import glob\n",
"def ri(z): return (z.real, z.imag)\n",
"#m = re.compile(r\"([^_]+)_r([0-9.]+)nm_\")\n",
"#removek = re.compile(r\"(k\\([^)]+\\)um-1_)\")\n",
"remover = re.compile(r\"r[0-9.]+nm_\")\n",
"\n",
"\n",
"markerdict = {\n",
" 4: \"3\",\n",
" -4: \"4\",\n",
" 3: \"^\",\n",
" -3: \"v\",\n",
" -2: 'x',\n",
" 2: '+',\n",
" 1: 's',\n",
" -1: 'd',\n",
"}\n",
"\n",
"prop_cycle = plt.rcParams['axes.prop_cycle']\n",
"colors = prop_cycle.by_key()['color']\n",
"colordict = {i: colors[(i+1)] for i in range(-4,8)}\n",
"\n",
"def markerfun(b):\n",
" if b in markerdict.keys():\n",
" return markerdict[b]\n",
" else: return 'X'\n",
"\n",
"def colorfun(b):\n",
" if (b+1) in colordict.keys():\n",
" return colordict[b+1]\n",
" else: return colordict[0]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"allfiles=glob.glob('*sph*k(0_0)*.npz')\n",
"allgraphs=dict()\n",
"for f in allfiles:\n",
" base = remover.sub('', f)\n",
" if base in allgraphs.keys():\n",
" allgraphs[base] += 1\n",
" else:\n",
" allgraphs[base] = 1\n",
"for k in sorted(allgraphs.keys()):\n",
" print(k, allgraphs[k])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"ename": "FileNotFoundError",
"evalue": "[Errno 2] No such file or directory: 'projectors_D4h_lMax1.npz'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-3-0c266089be08>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mlMaxes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mlMax\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mlMax\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mlMax\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mlMaxes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'projectors_D4h_lMax%d.npz'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mlMax\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mirlabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mproj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mproj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mirlabels\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/.local/lib/python3.7/site-packages/numpy-1.17.3-py3.7-linux-x86_64.egg/numpy/lib/npyio.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[1;32m 426\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 428\u001b[0;31m \u001b[0mfid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos_fspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 429\u001b[0m \u001b[0mown_fid\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'projectors_D4h_lMax1.npz'"
]
}
],
"source": [
"projectors = dict()\n",
"projectors_list = dict()\n",
"lMaxes = [lMax for lMax in range(1,6)]\n",
"for lMax in lMaxes:\n",
" proj = np.load('projectors_D4h_lMax%d.npz' % lMax)\n",
" irlabels = sorted(proj.keys())\n",
" proj = {f: proj[f] for f in irlabels}\n",
" proj_list = [proj[irlabels[i]] for i in range(len(proj))]\n",
" projectors[lMax] = proj\n",
" projectors_list[lMax] = proj_list\n",
"globpattern = '*sph_r*_p580nmx580nm_mAu_n1.52_b?2_k(0_0)um-1_L?_cn???.npz'\n",
"filenames=glob.glob(globpattern)\n",
"plotfilename = 'collected_' + globpattern.replace('*', 'XXX').replace('?', 'X').replace('npz','pdf')\n",
"print(filenames[:4], plotfilename)\n"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"#projectors\n",
"#glob.glob('cyl_r100nm*L3*3100.npz')\n",
"#glob.glob('sph_r100*m5*.npz')\n",
"#dat['meta'][()],list(dat.keys())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"inpure result detected [1. 0.99999999 1. 0.97991334 0.99999996 0.9999989\n",
" 0.99999983 0.99999966 0.99999322 0.99999721 0.99999653] [3.28735741e-04 2.66532534e-05 2.47011478e-05 1.45012420e-01\n",
" 2.44785416e-04 7.05405359e-04 1.60203586e-03 1.71245137e-03\n",
" 1.03244480e-02 9.18732728e-03 1.18651583e-02]\n",
"inpure result detected [1. 1. 0.99999998 0.99999999 0.99999996 0.96608887\n",
" 0.99999852 0.99999397 0.99998951 0.99999912 0.99982435] [2.66223026e-04 2.12357147e-05 3.54211968e-05 1.06651057e-04\n",
" 2.79595790e-04 2.41939163e-01 2.17645058e-03 3.41541473e-03\n",
" 1.14507609e-02 1.49639498e-02 2.33483138e-02]\n",
"inpure result detected [1. 1. 0.92521572 1. 0.99999627 0.99990293\n",
" 0.99946049] [1.59712906e-05 3.60193407e-05 2.48341492e-01 1.21848930e-03\n",
" 3.81805601e-03 2.42649228e-02 2.99534246e-02]\n",
"inpure result detected [1. 1. 0.99999998 0.99999961 0.93267685 0.99999964\n",
" 0.99999822 0.99921774 0.99995547 0.99997301] [5.22490396e-04 3.01556792e-05 4.88795563e-05 6.29703960e-04\n",
" 2.34414238e-01 3.72766210e-03 4.72444059e-03 7.62106094e-02\n",
" 6.32796684e-02 5.63231562e-02]\n"
]
}
],
"source": [
"plotdata = {}\n",
"for file in filenames:\n",
" dat = np.load(file, allow_pickle=True)\n",
" kx = dat['meta'][()]['k'][0]\n",
" radius = dat['meta'][()]['radius']\n",
" b = dat['meta'][()]['band_index']\n",
" eigvals = dat['eigval']\n",
" lMax = dat['meta'][()]['lMax']\n",
" residuals = dat['residuals']\n",
" ef =dat['empty_freqs']\n",
" eigvecs = dat['eigvec']\n",
" irweights = []\n",
" #for proj in projectors_list[lMax]:\n",
" # try:\n",
" # irweights.append(np.linalg.norm(np.tensordot(proj, eigvecs, axes=(-1, -1)), axis=0,ord=2) if len(proj) != 0 else np.zeros((len(eigvecs),)))\n",
" # except ValueError as err:\n",
" # print(proj, len(proj))\n",
" # raise err\n",
" irweights = np.array(irweights)\n",
" #print(irweights)\n",
" irweights = np.array([np.linalg.norm(np.tensordot(proj, eigvecs, axes=(-1, -1)), axis=0,ord=2) if len(proj) != 0 else np.zeros((len(eigvecs),)) for proj in projectors_list[lMax]]).T\n",
" irclass = np.argmax(irweights, axis=-1)\n",
" purities = np.amax(irweights, axis=-1)\n",
" if (np.any(purities < 0.98)):\n",
" print(\"inpure result detected\", purities, residuals)\n",
" #print(purities)\n",
" \n",
" #for i in range(len(residuals)): \n",
" # if residuals[i] < 0.01:\n",
" # vec = eigvecs[i]\n",
" # for irlabel, proj in projectors.items():\n",
" # print(irlabel, np.linalg.norm(np.dot(proj, vec))) #maybe some conj() here?\n",
" # print('--->', irlabels[irclass[i]])\n",
"\n",
" \n",
" plotdata[(lMax,radius)] = (eigvals, residuals, b, ef, irclass,)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fig = plt.figure(figsize=(15,6))\n",
"axesR = {}\n",
"axesI = {}\n",
"for i, lMax in enumerate(lMaxes):\n",
" axesR[lMax] = fig.add_subplot(2,len(lMaxes),i+1)\n",
" axesR[lMax].set_xlim([50,300])\n",
" axesR[lMax].set_ylim([1.25, ef[1]/eh])\n",
" axesI[lMax] = fig.add_subplot(2,len(lMaxes),len(lMaxes)+i+1)\n",
" axesI[lMax].set_xlim([50,300])\n",
" axesI[lMax].set_ylim([-60, 30])\n",
" axesR[lMax].set_title('$l_\\max = %d $' % lMax) \n",
" axesR[lMax].tick_params(labelbottom=False) \n",
" if i == len(lMaxes)//2:\n",
" axesI[lMax].set_xlabel(\"Particle base radius / nm\")\n",
" if i == 0:\n",
" axesR[lMax].set_ylabel('$\\hbar \\Re \\omega / \\mathrm{eV}$')\n",
" axesI[lMax].set_ylabel('$\\hbar \\Im \\omega / \\mathrm{meV}$')\n",
" else:\n",
" axesR[lMax].tick_params(labelleft=False) \n",
" axesI[lMax].tick_params(labelleft=False) \n",
"\n",
"res_thr = 0.005\n",
"\n",
"ir_labeled=set()\n",
"if True:\n",
" for (lMax, radius), (eigvals, residuals, b, ef, irclass) in plotdata.items():\n",
" for i, (e, res, iri) in enumerate(zip(eigvals, residuals, irclass)):\n",
" #if i == 0:\n",
" if res < res_thr:# and e.real < 2.14e15:\n",
" if iri in ir_labeled: \n",
" label=None\n",
" else:\n",
" ir_labeled.add(iri)\n",
" label=irlabels[iri]\n",
" axesR[lMax].plot(radius*1e9, e.real/eh, \n",
" marker='.',\n",
" #marker=markerfun(b),\n",
" ms=4, #c=colorfun(b)\n",
" c=matplotlib.cm.hsv(iri/9),\n",
" #c = colorfun(iri),\n",
" label=label,\n",
" )\n",
" axesI[lMax].plot(radius*1e9, e.imag/eh*1000, \n",
" #marker='x', \n",
" #c=colorfun(b), \n",
" c=matplotlib.cm.hsv(iri/9),#colorfun(iri),\n",
" marker='.', #markerfun(b),\n",
" ms=4,\n",
" #label=label\n",
" )\n",
"fig.legend(title=\"Irrep\", loc=\"center right\")\n",
"#fig.suptitle('$l_\\mathrm{max}=%d$, residual threshold = %g' % (lMax, res_thr) )\n",
"fig.savefig(plotfilename)\n",
"fig.savefig(plotfilename.replace('pdf', 'png'))\n",
"print(plotfilename)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0. , 1.40635433, 1.98888536, 2.81270865, 3.14470387,\n",
" 3.97777072, 4.21906298, 4.44728287])"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ef / eh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -1,19 +0,0 @@
cmake_minimum_required(VERSION 3.0)
include(GNUInstallDirs)
project(Faddeeva VERSION 1.0 LANGUAGES C)
option(FADDEEVA_BUILD_STATIC "Build Faddeeva as static library" OFF)
if (FADDEEVA_BUILD_STATIC)
add_library(Faddeeva STATIC Faddeeva.h Faddeeva.c Faddeeva.cc)
else (FADDEEVA_BUILD_STATIC)
add_library(Faddeeva SHARED Faddeeva.c)
set_target_properties(Faddeeva PROPERTIES PUBLIC_HEADER "Faddeeva.h")
install(TARGETS Faddeeva
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
PUBLIC_HEADER DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
endif (FADDEEVA_BUILD_STATIC)
target_include_directories(Faddeeva PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -1,3 +0,0 @@
/* The Faddeeva.cc file contains macros to let it compile as C code
(assuming C99 complex-number support), so just #include it. */
#include "Faddeeva.cc"

File diff suppressed because it is too large Load Diff

View File

@ -1,68 +0,0 @@
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Available at: http://ab-initio.mit.edu/Faddeeva
Header file for Faddeeva.c; see Faddeeva.cc for more information. */
#ifndef FADDEEVA_H
#define FADDEEVA_H 1
// Require C99 complex-number support
#include <complex.h>
#ifdef __cplusplus
extern "C"
{
#endif /* __cplusplus */
// compute w(z) = exp(-z^2) erfc(-iz) [ Faddeeva / scaled complex error func ]
extern double complex Faddeeva_w(double complex z,double relerr);
extern double Faddeeva_w_im(double x); // special-case code for Im[w(x)] of real x
// Various functions that we can compute with the help of w(z)
// compute erfcx(z) = exp(z^2) erfc(z)
extern double complex Faddeeva_erfcx(double complex z, double relerr);
extern double Faddeeva_erfcx_re(double x); // special case for real x
// compute erf(z), the error function of complex arguments
extern double complex Faddeeva_erf(double complex z, double relerr);
extern double Faddeeva_erf_re(double x); // special case for real x
// compute erfi(z) = -i erf(iz), the imaginary error function
extern double complex Faddeeva_erfi(double complex z, double relerr);
extern double Faddeeva_erfi_re(double x); // special case for real x
// compute erfc(z) = 1 - erf(z), the complementary error function
extern double complex Faddeeva_erfc(double complex z, double relerr);
extern double Faddeeva_erfc_re(double x); // special case for real x
// compute Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
extern double complex Faddeeva_Dawson(double complex z, double relerr);
extern double Faddeeva_Dawson_re(double x); // special case for real x
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif // FADDEEVA_H

View File

@ -1,62 +0,0 @@
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Available at: http://ab-initio.mit.edu/Faddeeva
Header file for Faddeeva.cc; see that file for more information. */
#ifndef FADDEEVA_HH
#define FADDEEVA_HH 1
#include <complex>
namespace Faddeeva {
// compute w(z) = exp(-z^2) erfc(-iz) [ Faddeeva / scaled complex error func ]
extern std::complex<double> w(std::complex<double> z,double relerr=0);
extern double w_im(double x); // special-case code for Im[w(x)] of real x
// Various functions that we can compute with the help of w(z)
// compute erfcx(z) = exp(z^2) erfc(z)
extern std::complex<double> erfcx(std::complex<double> z, double relerr=0);
extern double erfcx(double x); // special case for real x
// compute erf(z), the error function of complex arguments
extern std::complex<double> erf(std::complex<double> z, double relerr=0);
extern double erf(double x); // special case for real x
// compute erfi(z) = -i erf(iz), the imaginary error function
extern std::complex<double> erfi(std::complex<double> z, double relerr=0);
extern double erfi(double x); // special case for real x
// compute erfc(z) = 1 - erf(z), the complementary error function
extern std::complex<double> erfc(std::complex<double> z, double relerr=0);
extern double erfc(double x); // special case for real x
// compute Dawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
extern std::complex<double> Dawson(std::complex<double> z, double relerr=0);
extern double Dawson(double x); // special case for real x
} // namespace Faddeeva
#endif // FADDEEVA_HH

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 KiB

View File

@ -1,8 +1,6 @@
Using QPMS library for simulating finite systems
================================================
*** This tutorial is partly obsolete, the interpolators are no longer the first choice of getting the T-matrices. ***
The main C API for finite systems is defined in [scatsystem.h][], and the
most relevant parts are wrapped into python modules. The central data structure
defining the system of scatterers is [qpms_scatsys_t][],

118
lattices.md Normal file
View File

@ -0,0 +1,118 @@
Using QPMS library for finding modes of 2D-periodic systems
===========================================================
Calculating modes of infinite 2D arrays is now done
in several steps (assuming the T-matrices have already
been obtained using `scuff-tmatrix` or can be obtained
from Lorenz-Mie solution (spherical particles)):
1. Sampling the *k*, *ω* space.
2. Pre-calculating the
Ewald-summed translation operators.
3. For each *k*, *ω* pair, build the LHS operator
for the scattering problem (TODO reference), optionally decomposed
into suitable irreducible representation subspaces.
4. Evaluating the singular values and finding their minima.
The steps above may (and will) change as more user-friendly interface
will be developed.
Preparation: compile the `ew_gen_kin` utility
---------------------------------------------
This will change, but at this point, the lattice-summed
translation operators are computed using the `ew_gen_kin`
utility located in the `qpms/apps` directory. It has to be built
manually like this:
```bash
cd qpms/apps
c99 -o ew_gen_kin -Wall -I ../.. -I ../../amos/ -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c ../bessel.c -lgsl -lm -lblas ../../amos/libamos.a -lgfortran ../error.c
```
Step 1: Sampling the *k*, *ω* space
--------------------------------------
`ew_gen_kin` expects a list of (*k_x*, *k_y*)
pairs on standard input (separated by whitespaces),
the rest is specified via command line arguments.
So if we want to examine the line between the Г point and the point
\f$ k = (0, 10^5\,\mathrm{m}^{-1}) \f$, we can generate an input
running
```bash
for ky in $(seq 0 1e3 1e5); do
echo 0 $ky >> klist
done
```
It also make sense to pre-generate the list of *ω* values,
e.g.
```bash
seq 6.900 0.002 7.3 | sed -e 's/,/./g' > omegalist
```
Step 2: Pre-calculating the translation operators
-------------------------------------------------
`ew_gen_kin` currently uses command-line arguments in
an atrocious way with a hard-coded order:
```
ew_gen_kin outfile b1.x b1.y b2.x b2.y lMax scuffomega refindex npart part0.x part0.y [part1.x part1.y [...]]
```
where `outfile` specifies the path to the output, `b1` and `b2` are the
direct lattice vectors, `lMax` is the multipole degree cutoff,
`scuffomega` is the frequency in the units used by `scuff-tmatrix`
(TODO specify), `refindex` is the refractive index of the background
medium, `npart` number of particles in the unit cell, and `partN` are
the positions of these particles inside the unit cell.
Assuming we have the `ew_gen_kin` binary in our `${PATH}`, we can
now run e.g.
```bash
for omega in $(cat omegalist); do
ew_gen_kin $omega 621e-9 0 0 571e-9 3 w_$omega 1.52 1 0 0 < klist
done
```
This pre-calculates the translation operators for a simple (one particle per unit cell)
621 nm × 571 nm rectangular lattice inside a medium with refractive index 1.52,
up to the octupole (`lMax` = 3) order, yielding one file per frequency.
This can take some time and
it makes sense to run a parallelised `for`-loop instead; this is a stupid but working
way to do it in bash:
```bash
N=4 # number of parallel processes
for omega in $(cat omegalist); do
((i=i%N)); ((i++==0)) && wait
ew_gen_kin $omega 621e-9 0 0 571e-9 3 w_$omega 1.52 1 0 0 < klist
echo $omega # optional, to follow progress
done
```
When this is done, we convert all the text output files into
numpy's binary format in order to speed up loading in the following steps.
This is done using the processWfiles_sortnames.py script located in the
`misc` directory. Its usage pattern is
```
processWfiles_sortnames.py npart dest src1 [src2 ...]
```
where `npart` is the number of particles in the unit cell, `dest`
is the destination path for the converted data (this will be
a directory), and the remaining arguments are paths to the
files generated by `ew_gen_kin`. In the case above, one could use
```
processWfiles_sortnames.py 1 all w_*
```
which would create a directory named `all` containing several
.npy files.
Steps 3, 4
----------
TODO. For the time being, see e.g. the `SaraRect/dispersions.ipynb` jupyter notebook
from the `qpms_ipynotebooks` repository
for the remaining steps.

View File

@ -0,0 +1,67 @@
#!/usr/bin/env python
# coding: utf-8
from qpms import Particle, CTMatrix, BaseSpec, FinitePointGroup, ScatteringSystem, TMatrixInterpolator, eV, hbar, c, MaterialInterpolator, scatsystem_set_nthreads
from qpms.symmetries import point_group_info
import numpy as np
import os
import sys
from pathlib import Path
if 'SLURM_CPUS_PER_TASK' in os.environ:
scatsystem_set_nthreads(int(os.environ['SLURM_CPUS_PER_TASK']))
nm = 1e-9
rewrite_output = '--rewrite-output' in sys.argv
sym = FinitePointGroup(point_group_info['D2h'])
bspec = BaseSpec(lMax = 2)
tmfile = '/m/phys/project/qd/Marek/tmatrix-experiments/Cylinder/AaroBEC/cylinder_50nm_lMax4_longer.TMatrix'
#outputdatadir = '/home/necadam1/wrkdir/AaroBECfinite_new'
outputdatadir = '/u/46/necadam1/unix/project/AaroBECfinite_new'
os.makedirs(outputdatadir, exist_ok = True)
interp = TMatrixInterpolator(tmfile, bspec, symmetrise = sym, atol = 1e-8)
# There is only one t-matrix in the system for each frequency. We initialize the matrix with the lowest frequency data.
# Later, we can replace it using the tmatrix[...] = interp(freq) and s.update_tmatrices NOT YET; TODO
omega = float(sys.argv[3]) * eV/hbar
sv_threshold = float(sys.argv[4])
# Now place the particles and set background index.
px = 571*nm; py = 621*nm
n = 1.52
Nx = int(sys.argv[1])
Ny = int(sys.argv[2])
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
tmatrix = interp(omega)
#print(tmatrix.m)
particles = [Particle(orig_xy[i], tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
ss = ScatteringSystem(particles, sym)
k = n * omega / c
for iri in range(ss.nirreps):
destpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d.npz'%(Nx, Ny, omega/eV*hbar, iri,))
touchpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d.done'%(Nx, Ny, omega/eV*hbar, iri,))
if (os.path.isfile(destpath) or os.path.isfile(touchpath)) and not rewrite_output:
print(destpath, 'already exists, skipping')
continue
mm_iri = ss.modeproblem_matrix_packed(k, iri)
#print(mm_iri)
U, S, Vh = np.linalg.svd(mm_iri)
del U
print(iri, ss.irrep_names[iri], S[-1])
starti = max(0,len(S) - np.searchsorted(S[::-1], sv_threshold, side='left')-1)
np.savez(destpath,
S=S[starti:], omega=omega, Vh = Vh[starti:], iri=iri, Nx = Nx, Ny= Ny )
del S
del Vh
Path(touchpath).touch()
# Don't forget to conjugate Vh before transforming it to the full vector!

View File

@ -0,0 +1,79 @@
#!/usr/bin/env python3
# coding: utf-8
from qpms import Particle, CTMatrix, BaseSpec, FinitePointGroup, ScatteringSystem, TMatrixInterpolator, eV, hbar, c, MaterialInterpolator, scatsystem_set_nthreads
from qpms.symmetries import point_group_info
from pathlib import Path
import numpy as np
import os
import sys
nm = 1e-9
if 'SLURM_CPUS_PER_TASK' in os.environ:
scatsystem_set_nthreads(int(os.environ['SLURM_CPUS_PER_TASK']))
rewrite_output = '--rewrite-output' in sys.argv
cyr_part_height = 50*nm
cyr_part_radius = 50*nm
cyr_part_volume = cyr_part_height * np.pi * cyr_part_radius**2
eqv_sph_radius = (3/4/np.pi*cyr_part_volume)**(1/3)
sym = FinitePointGroup(point_group_info['D2h'])
bspec = BaseSpec(lMax = 2)
#tmfile = '/m/phys/project/qd/Marek/tmatrix-experiments/Cylinder/AaroBEC/cylinder_50nm_lMax4_cleaned.TMatrix'
materialfile = '/home/necadam1/wrkdir/repo/refractiveindex.info-database/database/data/main/Au/Johnson.yml'
#outputdatadir = '/home/necadam1/wrkdir/AaroBECfinite_new'
#outputdatadir = '/u/46/necadam1/unix/project/AaroBECfinite_sph'
outputdatadir = '/home/necadam1/wrkdir/AaroBECfinite_sph'
os.makedirs(outputdatadir, exist_ok = True)
mi = MaterialInterpolator(materialfile)
#interp = TMatrixInterpolator(tmfile, bspec, symmetrise = sym, atol = 1e-8)
# There is only one t-matrix in the system for each frequency. We initialize the matrix with the lowest frequency data.
# Later, we can replace it using the tmatrix[...] = interp(freq) and s.update_tmatrices NOT YET; TODO
omega = float(sys.argv[3]) * eV/hbar
sv_threshold = float(sys.argv[4])
# Now place the particles and set background index.
px = 571*nm; py = 621*nm
n = 1.52
Nx = int(sys.argv[1])
Ny = int(sys.argv[2])
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
#tmatrix = interp(omega)
tmatrix = CTMatrix.spherical_perm(bspec, eqv_sph_radius, omega, mi(omega), n**2)
particles = [Particle(orig_xy[i], tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
ss = ScatteringSystem(particles, sym)
k = n * omega / c
for iri in range(ss.nirreps):
destpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d.npz'%(Nx, Ny, omega/eV*hbar, iri))
touchpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d.done'%(Nx, Ny, omega/eV*hbar, iri))
if (os.path.isfile(destpath) or os.path.isfile(touchpath)) and not rewrite_output:
print(destpath, 'already exists, skipping')
continue
mm_iri = ss.modeproblem_matrix_packed(k, iri)
U, S, Vh = np.linalg.svd(mm_iri)
del U
print(iri, ss.irrep_names[iri], S[-1])
starti = max(0,len(S) - np.searchsorted(S[::-1], sv_threshold, side='left')-1)
np.savez(destpath,
S=S[starti:], omega=omega, Vh = Vh[starti:], iri=iri, Nx = Nx, Ny= Ny )
del S
del Vh
Path(touchpath).touch()
# Don't forget to conjugate Vh before transforming it to the full vector!

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
# coding: utf-8
from qpms import Particle, CTMatrix, BaseSpec, FinitePointGroup, ScatteringSystem, TMatrixInterpolator, eV, hbar, c, MaterialInterpolator, scatsystem_set_nthreads
from qpms.symmetries import point_group_info
import numpy as np
import os
import sys
from pathlib import Path
if 'SLURM_CPUS_PER_TASK' in os.environ:
scatsystem_set_nthreads(int(os.environ['SLURM_CPUS_PER_TASK']))
nm = 1e-9
rewrite_output = '--rewrite-output' in sys.argv
radiusfactor = float(sys.argv[5])
cyr_part_height = 50*nm
cyr_part_radius = 50*nm
cyr_part_volume = cyr_part_height * np.pi * cyr_part_radius**2
eqv_sph_radius = (3/4/np.pi*cyr_part_volume)**(1/3) * radiusfactor
sym = FinitePointGroup(point_group_info['D2h'])
bspec = BaseSpec(lMax = 2)
#tmfile = '/m/phys/project/qd/Marek/tmatrix-experiments/Cylinder/AaroBEC/cylinder_50nm_lMax4_cleaned.TMatrix'
materialfile = '/home/necadam1/wrkdir/repo/refractiveindex.info-database/database/data/main/Au/Johnson.yml'
#outputdatadir = '/home/necadam1/wrkdir/AaroBECfinite_new'
#outputdatadir = '/u/46/necadam1/unix/project/AaroBECfinite_sph'
outputdatadir = '/home/necadam1/wrkdir/AaroBECfinite_fatsph'
os.makedirs(outputdatadir, exist_ok = True)
mi = MaterialInterpolator(materialfile)
#interp = TMatrixInterpolator(tmfile, bspec, symmetrise = sym, atol = 1e-8)
# There is only one t-matrix in the system for each frequency. We initialize the matrix with the lowest frequency data.
# Later, we can replace it using the tmatrix[...] = interp(freq) and s.update_tmatrices NOT YET; TODO
omega = float(sys.argv[3]) * eV/hbar
sv_threshold = float(sys.argv[4])
# Now place the particles and set background index.
px = 571*nm; py = 621*nm
n = 1.52
Nx = int(sys.argv[1])
Ny = int(sys.argv[2])
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
#tmatrix = interp(omega)
tmatrix = CTMatrix.spherical_perm(bspec, eqv_sph_radius, omega, mi(omega), n**2)
particles = [Particle(orig_xy[i], tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
ss = ScatteringSystem(particles, sym)
k = n * omega / c
for iri in range(ss.nirreps):
destpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d_r%gnm.npz'%(Nx, Ny, omega/eV*hbar, iri, eqv_sph_radius/nm))
touchpath = os.path.join(outputdatadir, 'Nx%d_Ny%d_%geV_ir%d_r%gnm.done'%(Nx, Ny, omega/eV*hbar, iri, eqv_sph_radius/nm))
if (os.path.isfile(destpath) or os.path.isfile(touchpath)) and not rewrite_output:
print(destpath, 'already exists, skipping')
continue
mm_iri = ss.modeproblem_matrix_packed(k, iri)
U, S, Vh = np.linalg.svd(mm_iri)
del U
print(iri, ss.irrep_names[iri], S[-1])
starti = max(0,len(S) - np.searchsorted(S[::-1], sv_threshold, side='left')-1)
np.savez(destpath,
S=S[starti:], omega=omega, Vh = Vh[starti:], iri=iri, Nx = Nx, Ny= Ny )
del S
del Vh
Path(touchpath).touch()
# Don't forget to conjugate Vh before transforming it to the full vector!

547
misc/dispersion-SVD.py Executable file
View File

@ -0,0 +1,547 @@
#!/usr/bin/env python3
import argparse, re, random, string
import subprocess
from scipy.constants import hbar, e as eV, pi, c
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
#sizepar = parser.add_mutually_exclusive_group(required=True)
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--output', action='store', help='Path to output PDF')
parser.add_argument('--store_SVD', action='store_true', help='If specified without --SVD_output, it will save the data in a file named as the PDF output, but with .npz extension instead')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview')
parser.add_argument('--eVmax', action='store', type=float, help='Skip frequencies above this value')
parser.add_argument('--eVmin', action='store', type=float, help='Skip frequencies below this value')
parser.add_argument('--kdensity', action='store', type=int, default=66, help='Number of k-points per x-axis segment')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops'))
popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops'))
popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops'))
popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
print(pargs)
translations_dir = pargs.griddir
TMatrix_file = pargs.TMatrix
pdfout = pargs.output if pargs.output else (''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf')
print(pdfout)
if(pargs.store_SVD):
if re.search('.pdf$', pdfout):
svdout = re.sub('.pdf$', r'.npz', pdfout)
else:
svdout = pdfout + '.npz'
else:
svdout = None
hexside = pargs.hexside #375e-9
epsilon_b = pargs.background_permittivity #2.3104
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kdensity = pargs.kdensity
minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None
maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None
skipfreq = pargs.sparse if pargs.sparse else None
svn = pargs.nSV
# TODO multiplier operation definitions and parsing
#factor13inc = 10
#factor13scat=10
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1]))
else:
raise # should not happen
print(ops)
#ops = (
# # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj),
# # co: 0, 1, (0,1), (0,), (1,), #NI: 'all'
# # typ operace: sym, tr, copy
# # specifikace:
# # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3',
# # copy: 0, 1 (zdroj)
# ((0,1), 'sym', 'σ_z'),
# #((0,1), 'sym', 'σ_x'),
# #((0,1), 'sym', 'σ_y'),
# ((0,1), 'sym', 'C3'),
# ((1), 'tr', 'C2'),
#
#)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
import time
begtime=time.time()
from matplotlib.path import Path
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import qpms
import numpy as np
import os, sys, warnings, math
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
pdf = PdfPages(pdfout)
# In[3]:
# specifikace T-matice zde
cdn = c/ math.sqrt(epsilon_b)
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
ž = np.arange(2*nelem)
= ž // nelem
= my[ž%nelem]
= ny[ž%nelem]
TEž = ž[(++) % 2 == 0]
TMž = ž[(++) % 2 == 1]
č = np.arange(2*2*nelem)
žč = č % (2* nelem)
= [žč]
= [žč]
= [žč]
TEč = č[(++) % 2 == 0]
TMč = č[(++) % 2 == 1]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
targets = (0,1)
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
# In[4]:
om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100)
TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem))
f, axa = plt.subplots(2, 2, figsize=(15,15))
#print(TMatrices.shape)
#plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--'))
ax = axa[0,0]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, TMatrix0ip[:,:].imag,'-',om, TMatrix0ip[:,:].real,'--',
)
ax = axa[0,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, abs(TMatrix0ip[:,:]),'-'
)
ax.set_yscale('log')
ax = axa[1,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-'
)
ax = axa[1,0]
ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes)
pdf.savefig(f)
# In[ ]:
#kdensity = 66 #defined from cl arguments
bz_0 = np.array((0,0,0.,))
bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3
bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3
bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx]
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx]
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx]
B1 = 2* bz_K1 - bz_K2
B2 = 2* bz_K2 - bz_K1
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1))))
# In[ ]:
n2id = np.identity(2*nelem)
n2id.shape = (2,nelem,2,nelem)
extlistlist = list()
leftmatrixlistlist = list()
minsvTElistlist=list()
minsvTMlistlist=list()
if svdout:
svUfullTElistlist = list()
svVfullTElistlist = list()
svSfullTElistlist = list()
svUfullTMlistlist = list()
svVfullTMlistlist = list()
svSfullTMlistlist = list()
nan = float('nan')
omegalist = list()
filecount = 0
for trfile in os.scandir(translations_dir):
filecount += 1
if (skipfreq and filecount % skipfreq):
continue
try:
npz = np.load(trfile.path, mmap_mode='r')
k_0 = npz['precalc_params'][()]['k_hexside'] / hexside
omega = k_0 * c / math.sqrt(epsilon_b)
if((minfreq and omega < minfreq) or (maxfreq and omega > maxfreq)):
continue
except:
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
continue
try:
tdic = qpms.hexlattice_precalc_AB_loadunwrap(trfile.path, return_points=True)
except:
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
continue
k_0 = tdic['k_hexside'] / hexside
omega = k_0 * c / math.sqrt(epsilon_b)
omegalist.append(omega)
print(filecount, omega/eV*hbar)
sys.stdout.flush()
a_self = tdic['a_self'][:,:nelem,:nelem]
b_self = tdic['b_self'][:,:nelem,:nelem]
a_u2d = tdic['a_u2d'][:,:nelem,:nelem]
b_u2d = tdic['b_u2d'][:,:nelem,:nelem]
a_d2u = tdic['a_d2u'][:,:nelem,:nelem]
b_d2u = tdic['b_d2u'][:,:nelem,:nelem]
unitcell_translations = tdic['self_tr']*hexside*s3
u2d_translations = tdic['u2d_tr']*hexside*s3
d2u_translations = tdic['d2u_tr']*hexside*s3
if gaussianSigma:
unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2))
u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2))
d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2))
TMatrices_om = TMatrices_interp(omega)
if svdout:
svUfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTElist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
svUfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTMlist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
minsvTElist = np.full((klist.shape[0], svn),np.nan)
minsvTMlist = np.full((klist.shape[0], svn),np.nan)
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
# sem nějaká rozumná smyčka
for ki in range(klist.shape[0]):
k = klist[ki]
if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0):
isNaNlist[ki] = True
continue
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1)))
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1)))
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1)))
if gaussianSigma:
phases_self *= unitcell_envelope
phases_u2d *= u2d_envelope
phases_d2u *= d2u_envelope
leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex)
leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E
leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E
leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M
leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M
leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E
leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M
leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M
leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E
leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E
leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M
leftmatrix[1,0,:,0,0,:] = np.tensordot(a_u2d, phases_u2d,axes=(0,-1)) #u2d,E2E
leftmatrix[1,1,:,0,1,:] = leftmatrix[1,0,:,0,0,:] #u2d, M2M
leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E
leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M
leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E
leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M
#leftmatrix is now the translation matrix T
for j in range(2):
leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1]))
# at this point, jth row of leftmatrix is that of -MT
leftmatrix[j,:,:,j,:,:] += n2id
#now we are done, 1-MT
leftmatrixlist[ki] = leftmatrix
nnlist = np.logical_not(isNaNlist)
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
#svarr = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
#minsvTElist[nnlist] = svarr[...,argsortlist]
#minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1)
if svdout:
svUfullTElist[nnlist], svSfullTElist[nnlist], svVfullTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=True)
svUfullTMlist[nnlist], svSfullTMlist[nnlist], svVfullTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=True)
svUfullTElistlist.append(svUfullTElist)
svVfullTElistlist.append(svVfullTElist)
svSfullTElistlist.append(svSfullTElist)
svUfullTMlistlist.append(svUfullTMlist)
svVfullTMlistlist.append(svVfullTMlist)
svSfullTMlistlist.append(svSfullTMlist)
minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-svn:]
#svarr = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
#minsvTMlist[nnlist] = svarr[...,argsortlist]
#minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1)
minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-svn:]
minsvTMlistlist.append(minsvTMlist)
minsvTElistlist.append(minsvTElist)
minsvTElistarr = np.array(minsvTElistlist)
minsvTMlistarr = np.array(minsvTMlistlist)
del minsvTElistlist, minsvTMlistlist
if svdout:
svUfullTElistarr = np.array(svUfullTElistlist)
svVfullTElistarr = np.array(svVfullTElistlist)
svSfullTElistarr = np.array(svSfullTElistlist)
del svUfullTElistlist, svVfullTElistlist, svSfullTElistlist
svUfullTMlistarr = np.array(svUfullTMlistlist)
svVfullTMlistarr = np.array(svVfullTMlistlist)
svSfullTMlistarr = np.array(svSfullTMlistlist)
del svUfullTMlistlist, svVfullTMlistlist, svSfullTMlistlist
omegalist = np.array(omegalist)
# order to make the scatter plots "nice"
omegaorder = np.argsort(omegalist)
omegalist = omegalist[omegaorder]
minsvTElistarr = minsvTElistarr[omegaorder]
minsvTMlistarr = minsvTMlistarr[omegaorder]
if svdout:
svUfullTElistarr = svUfullTElistarr[omegaorder]
svVfullTElistarr = svVfullTElistarr[omegaorder]
svSfullTElistarr = svSfullTElistarr[omegaorder]
svUfullTMlistarr = svUfullTMlistarr[omegaorder]
svVfullTMlistarr = svVfullTMlistarr[omegaorder]
svSfullTMlistarr = svSfullTMlistarr[omegaorder]
np.savez(svdout, omega = omegalist, klist = klist, bzpoints = np.array([bz_0, bz_K1, bz_K2, bz_M, B1, B2]),
uTE = svUfullTElistarr,
vTE = svVfullTElistarr,
sTE = svSfullTElistarr,
uTM = svUfullTMlistarr,
vTM = svVfullTMlistarr,
sTM = svSfullTMlistarr,
)
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr[...,0].shape)
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr[...,0].shape)
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
# In[ ]:
for minN in reversed(range(svn)):
f, ax = plt.subplots(1, figsize=(20,15))
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTMlistarr[...,minN]), s =40, lw=0)
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
)
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
#ax.set_ylim([2.15,2.30])
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
f.colorbar(sc)
pdf.savefig(f)
# In[ ]:
f, ax = plt.subplots(1, figsize=(20,15))
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTElistarr[...,minN]), s =40, lw=0)
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
)
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
#ax.set_ylim([2.15,2.30])
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
f.colorbar(sc)
pdf.savefig(f)
pdf.close()
if scp_dest:
subprocess.run(['scp', pdfout, scp_dest])
if svdout:
subprocess.run(['scp', svdout, scp_dest])
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))

403
misc/dispersion2D-SVD.py Executable file
View File

@ -0,0 +1,403 @@
#!/usr/bin/env python3
import argparse, re, random, string
import subprocess
from scipy.constants import hbar, e as eV, pi, c
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the pdf and/or npz output (will be appended frequency and hexside)')
#sizepar = parser.add_mutually_exclusive_group(required=True)
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--output', action='store', help='Path to output PDF')
parser.add_argument('--store_SVD', action='store_false', help='If specified without --SVD_output, it will save the data in a file named as the PDF output, but with .npz extension instead')
parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values')
parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV')
parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops'))
popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops'))
popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops'))
popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
print(pargs)
maxlayer=pargs.maxlayer
hexside=pargs.hexside
eVfreq = pargs.eVfreq
freq = eVfreq*eV/hbar
TMatrix_file = pargs.TMatrix
pdfout = pargs.output if pargs.output else (
'%s_%dnm_%.4f.pdf' % (pargs.output_prefix,hexside/1e-9,eVfreq) if pargs.output_prefix else
(''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf'))
print(pdfout)
if(pargs.store_SVD):
if re.search('.pdf$', pdfout):
svdout = re.sub('.pdf$', r'.npz', pdfout)
else:
svdout = pdfout + '.npz'
else:
svdout = None
epsilon_b = pargs.background_permittivity #2.3104
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kdensity = pargs.kdensity
svn = pargs.nSV
# TODO multiplier operation definitions and parsing
#factor13inc = 10
#factor13scat=10
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1]))
else:
raise # should not happen
print(ops)
#ops = (
# # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj),
# # co: 0, 1, (0,1), (0,), (1,), #NI: 'all'
# # typ operace: sym, tr, copy
# # specifikace:
# # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3',
# # copy: 0, 1 (zdroj)
# ((0,1), 'sym', 'σ_z'),
# #((0,1), 'sym', 'σ_x'),
# #((0,1), 'sym', 'σ_y'),
# ((0,1), 'sym', 'C3'),
# ((1), 'tr', 'C2'),
#
#)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
import time
begtime=time.time()
from matplotlib.path import Path
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import qpms
import numpy as np
import os, sys, warnings, math
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
pdf = PdfPages(pdfout)
# In[3]:
# specifikace T-matice zde
cdn = c/ math.sqrt(epsilon_b)
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
lMax = lMaxTM
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
targets = (0,1)
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
# In[4]:
if(pargs.plot_TMatrix):
om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100)
TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem))
f, axa = plt.subplots(2, 2, figsize=(15,15))
#print(TMatrices.shape)
#plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--'))
ax = axa[0,0]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, TMatrix0ip[:,:].imag,'-',om, TMatrix0ip[:,:].real,'--',
)
ax = axa[0,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, abs(TMatrix0ip[:,:]),'-'
)
ax.set_yscale('log')
ax = axa[1,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-'
)
ax = axa[1,0]
ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes)
pdf.savefig(f)
# In[ ]:
'''
#kdensity = 66 #defined from cl arguments
bz_0 = np.array((0,0,0.,))
bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3
bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3
bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx]
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx]
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx]
B1 = 2* bz_K1 - bz_K2
B2 = 2* bz_K2 - bz_K1
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1))))
'''
klist = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside)
TMatrices_om = TMatrices_interp(freq)
svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer,
omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=(0 if svdout else svn))
if svdout:
((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres
(minsvElist, minsvTMlist) = (svSfullTElist[...,-svn:], svSfullTMlist[...,-svn:])
else:
minsvTElist, minsvTMlist = svdres
''' The new pretty diffracted order drawing '''
maxlayer_reciprocal=4
cdn = c/ math.sqrt(epsilon_b)
bz_0 = np.array((0,0,))
bz_K1 = np.array((1.,0))*4*np.pi/3/hexside/s3
bz_K2 = np.array((1./2.,s3/2))*4*np.pi/3/hexside/s3
bz_M = np.array((3./4, s3/4))*4*np.pi/3/hexside/s3
# reciprocal lattice basis
B1 = 2* bz_K1 - bz_K2
B2 = 2* bz_K2 - bz_K1
if svdout:
np.savez(svdout, omega = freq, klist = klist, bzpoints = np.array([bz_0, bz_K1, bz_K2, bz_M, B1, B2]),
uTE = svUfullTElist,
vTE = svVfullTElist,
sTE = svSfullTElist,
uTM = svUfullTMlist,
vTM = svVfullTMlist,
sTM = svSfullTMlist,
)
k2density = 100
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,k2density)[:,nx]
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,k2density)[:,nx]
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,k2density)[:,nx]
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,k2density)[:,nx]
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,k2density)[:,nx]
k2list = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(k2list, axis=0), axis=-1))))
centers2=qpms.generate_trianglepoints(maxlayer_reciprocal, v3d = False, include_origin= True)*4*np.pi/3/hexside
rot90 = np.array([[0,-1],[1,0]])
centers2=np.dot(centers2,rot90)
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.path import Path
import matplotlib.patches as patches
cmap = matplotlib.cm.prism
colormax = np.amax(np.linalg.norm(centers2,axis=0))
# In[ ]:
for minN in reversed(range(svn)):
f, axes = plt.subplots(1,3, figsize=(20,4.8))
ax = axes[0]
sc = ax.scatter(klist[:,0], klist[:,1], c = np.clip(np.abs(minsvTElist[:,minN]),0,1), lw=0)
for center in centers2:
circle=plt.Circle((center[0],center[1]),omega/cdn, facecolor='none', edgecolor=cmap(np.linalg.norm(center)/colormax),lw=0.5)
ax.add_artist(circle)
verts = [(math.cos(math.pi*i/3)*4*np.pi/3/hexside/s3,math.sin(math.pi*i/3)*4*np.pi/3/hexside/s3) for i in range(6 +1)]
codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY,]
path = Path(verts, codes)
patch = patches.PathPatch(path, facecolor='none', edgecolor='black', lw=1)
ax.add_patch(patch)
ax.set_xticks([])
ax.set_yticks([])
ax.title.set_text('E in-plane ("TE")')
f.colorbar(sc,ax=ax)
ax = axes[1]
sc = ax.scatter(klist[:,0], klist[:,1], c = np.clip(np.abs(minsvTMlist[:,minN]),0,1), lw=0)
for center in centers2:
circle=plt.Circle((center[0],center[1]),omega/cdn, facecolor='none', edgecolor=cmap(np.linalg.norm(center)/colormax),lw=0.5)
ax.add_artist(circle)
verts = [(math.cos(math.pi*i/3)*4*np.pi/3/hexside/s3,math.sin(math.pi*i/3)*4*np.pi/3/hexside/s3) for i in range(6 +1)]
codes = [Path.MOVETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.LINETO,Path.CLOSEPOLY,]
path = Path(verts, codes)
patch = patches.PathPatch(path, facecolor='none', edgecolor='black', lw=1)
ax.add_patch(patch)
ax.set_xticks([])
ax.set_yticks([])
ax.title.set_text('E perpendicular ("TM")')
f.colorbar(sc,ax=ax)
ax = axes[2]
for center in centers2:
ax.plot(kxmaplist, np.linalg.norm(k2list-center,axis=-1)*cdn, '-', color=cmap(np.linalg.norm(center)/colormax))
#ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
#ax.set_ylim([np.min(omegalist),np.max(omegalist)])
xticklist = [0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]]
ax.set_xticks(xticklist)
for xt in xticklist:
ax.axvline(xt, ls='dotted', lw=0.3,c='k')
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
ax.axhline(omega, c='black')
ax.set_ylim([0,5e15])
ax2 = ax.twinx()
ax2.set_ylim([ax.get_ylim()[0]/eV*hbar,ax.get_ylim()[1]/eV*hbar])
pdf.savefig(f)
pdf.close()
if scp_dest:
subprocess.run(['scp', pdfout, scp_dest])
if svdout:
subprocess.run(['scp', svdout, scp_dest])
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))

239
misc/dispersion_hex_chunks.py Executable file
View File

@ -0,0 +1,239 @@
#!/usr/bin/env python3
import argparse, re, random, string
import subprocess
from scipy.constants import hbar, e as eV, pi, c
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)')
#sizepar = parser.add_mutually_exclusive_group(required=True)
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV')
parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment')
parser.add_argument('--chunklen', action='store', type=int, default=1000, help='Number of k-points per output file (default 1000)')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops'))
popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops'))
popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops'))
popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
print(pargs)
maxlayer=pargs.maxlayer
hexside=pargs.hexside
eVfreq = pargs.eVfreq
freq = eVfreq*eV/hbar
verbose=pargs.verbose
TMatrix_file = pargs.TMatrix
epsilon_b = pargs.background_permittivity #2.3104
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kdensity = pargs.kdensity
chunklen = pargs.chunklen
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1]))
else:
raise # should not happen
print(ops)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
from qpms.timetrack import _time_b, _time_e
btime=_time_b(verbose)
import qpms
import numpy as np
import os, sys, warnings, math
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
# specifikace T-matice zde
cdn = c/ math.sqrt(epsilon_b)
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
lMax = lMaxTM
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
targets = (0,1)
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
klist_full = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside)
TMatrices_om = TMatrices_interp(freq)
chunkn = math.ceil(klist_full.shape[0] / chunklen)
if verbose:
print('Evaluating %d k-points in %d chunks' % (klist_full.shape[0], chunkn), file = sys.stderr)
sys.stderr.flush()
metadata = np.array({
'lMax' : lMax,
'maxlayer' : maxlayer,
'gaussianSigma' : gaussianSigma,
'epsilon_b' : epsilon_b,
'hexside' : hexside,
'chunkn' : chunkn,
'TMatrix_file' : TMatrix_file,
'ops' : ops,
})
for chunki in range(chunkn):
svdout = '%s_%dnm_%.4f_c%03d.npz' % (pargs.output_prefix, hexside/1e-9, eVfreq, chunki)
klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen]
svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer,
omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=False, verbose=verbose)
#((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres
np.savez(svdout, omega = freq, klist = klist,
metadata=metadata,
uTE = svdres[0][0],
vTE = svdres[0][2],
sTE = svdres[0][1],
uTM = svdres[1][0],
vTM = svdres[1][2],
sTM = svdres[1][1],
)
svdres=None
if scp_dest:
if svdout:
subprocess.run(['scp', svdout, scp_dest])
_time_e(btime, verbose)
#print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))

View File

@ -1,719 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import qpms\n",
"import warnings\n",
"from qpms.cybspec import BaseSpec\n",
"from qpms.cytmatrices import CTMatrix, TMatrixGenerator, TMatrixInterpolator\n",
"from qpms.qpms_c import Particle, pgsl_ignore_error\n",
"from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude\n",
"from qpms.cycommon import DebugFlags, dbgmsg_enable\n",
"from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar\n",
"import scipy.constants as sci\n",
"eh = eV/hbar"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#TODO\n",
"period = 520e-9\n",
"a1 = np.array([0,period]) \n",
"a2 = np.array([period,0])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#Particle positions\n",
"orig_x = [0]\n",
"orig_y = [0]\n",
"orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"period = 0.52\n",
"refractive_index = 1.52 # for background medium\n",
"height = 50e-9 # Particle height\n",
"radius = 50e-9 # Particle radius\n",
"medium = EpsMu(refractive_index**2) # non-lossy background medium with constant refr. index #OK\n",
"# global symmetry group of the system\n",
"#sym = FinitePointGroup(point_group_info['D4h'])\n",
"omega = 1.58*eh\n",
"metal = lorentz_drude['Ag']\n",
"kx_lim = np.array([-0.2, 0.2], dtype=float)\n",
"N=501"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(7.59633723939313, 8.305328715069821, 7.94387469344152, 8.001475225494097)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"omega_scuff_min=1.5*eh/3e14\n",
"omega_scuff_max=1.64*eh/3e14\n",
"omega_scuff=omega/3e14\n",
"omega_scuff_slr=(2*np.pi*sci.c/(1.52*0.52e-6))/3e14\n",
"omega_scuff_min, omega_scuff_max, omega_scuff_slr, omega_scuff"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"bspec = BaseSpec(lMax = 1)\n",
"\n",
"tmfile_scuffOld = '/home/javier/tmatrices/sphereAg_50nm_oldScuff.TMatrix'\n",
"tmfile_scuffNew = '/home/javier/tmatrices/sphere50nm_newScuff.TMatrix'\n",
"interp_old = TMatrixInterpolator(tmfile_scuffOld, bspec, atol=1e-8) \n",
"interp_new = TMatrixInterpolator(tmfile_scuffNew, bspec, atol=1e-8) \n",
"tmscuff_not_fixed = interp_old(omega)\n",
"tmscuff_bugfixed = interp_new(omega)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"tmgen = TMatrixGenerator.sphere(medium, metal, radius)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"tmgen_omega=tmgen(bspec,omega)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-0.07824951+0.25215549j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ],\n",
" [ 0. +0.j , -0.07824951+0.25215549j, 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j ],\n",
" [ 0. +0.j , 0. +0.j , -0.07824951+0.25215549j, 0. +0.j , 0. +0.j , 0. +0.j ],\n",
" [ 0. +0.j , 0. +0.j , 0. +0.j , -0.00083788-0.01420874j, 0. +0.j , 0. +0.j ],\n",
" [ 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j , -0.00083788-0.01420874j, 0. +0.j ],\n",
" [ 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j , 0. +0.j , -0.00083788-0.01420874j]])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tmgen_omega.as_ndarray() # T-Matrix from generator"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-4.70886671e-03+1.79440815e-02j, 1.60098226e-13+4.20092462e-13j, 2.26455777e-07+3.98932962e-07j, -2.13258227e-14-6.01930824e-14j, 7.66251504e-08-1.32539814e-08j,\n",
" -7.76488937e-14+1.08532726e-13j],\n",
" [-4.41531068e-13+9.81757019e-14j, -4.70582367e-03+1.79389513e-02j, -1.60702588e-13-4.19762769e-13j, 6.32372612e-08+4.71302619e-08j, -2.36039655e-14+1.00983241e-13j,\n",
" 7.76590838e-08-1.38092126e-08j],\n",
" [-4.58579591e-07-7.49053314e-09j, 4.41175187e-13-9.87457125e-14j, -4.70886672e-03+1.79440815e-02j, 2.13790755e-14+1.31812722e-13j, 6.25535562e-08+4.61875295e-08j,\n",
" 4.59276044e-14-4.47400043e-14j],\n",
" [ 4.93366461e-14-4.29235249e-14j, -6.94450011e-09-1.60278760e-08j, -7.79609985e-14+1.07845028e-13j, -3.03166095e-05-2.01474828e-03j, -2.39253108e-13-1.34944425e-13j,\n",
" 1.16328171e-08+6.36863105e-09j],\n",
" [ 8.21008790e-09-1.53591010e-08j, -2.36580203e-14+1.00878213e-13j, -5.41800099e-09-1.65573897e-08j, 2.26431323e-13-1.55248143e-13j, -3.03231670e-05-2.01493037e-03j,\n",
" 2.38800352e-13+1.35401679e-13j],\n",
" [ 2.18731933e-14+1.31428484e-13j, 7.13657440e-09-1.65412452e-08j, -2.48667583e-14-6.12974376e-14j, -1.11447700e-08+7.19733229e-09j, -2.26916383e-13+1.54810715e-13j,\n",
" -3.03166170e-05-2.01474828e-03j]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tmscuff_not_fixed.as_ndarray() # T-Matrix of not fixed version of Scuff-EM"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-9.43033280e-02+3.59361755e-01j, 3.20658236e-12+8.41416904e-12j, 5.13892659e-06+8.57797510e-06j, -4.28949536e-13-1.20456867e-12j, 1.41239218e-06-2.46862181e-07j,\n",
" -1.55480479e-12+2.17400571e-12j],\n",
" [-8.84386127e-12+1.96169624e-12j, -9.42395846e-02+3.59248336e-01j, -3.22166474e-12-8.40342496e-12j, 1.16868119e-06+8.68484583e-07j, -4.72874254e-13+2.02296639e-12j,\n",
" 1.43308826e-06-2.58864855e-07j],\n",
" [-9.99885677e-06+6.63229466e-08j, 8.83605486e-12-1.97841571e-12j, -9.43033282e-02+3.59361755e-01j, 4.27888728e-13+2.63976219e-12j, 1.15544356e-06+8.48824647e-07j,\n",
" 9.21093604e-13-8.94225073e-13j],\n",
" [ 9.85267406e-13-8.59818272e-13j, -1.43866720e-06+2.57952214e-07j, -1.56233879e-12+2.15974773e-12j, -6.07143255e-04-4.03488631e-02j, -4.79139425e-12-2.70322093e-12j,\n",
" 1.52945653e-07+8.36194839e-08j],\n",
" [-1.15196465e-06-8.46913318e-07j, -4.73514628e-13+2.02574744e-12j, -1.40806670e-06+2.47097086e-07j, 4.53481568e-12-3.10854698e-12j, -6.07256494e-04-4.03513114e-02j,\n",
" 4.78231690e-12+2.71099900e-12j],\n",
" [ 4.39050064e-13+2.63269196e-12j, -1.17350730e-06-8.70822943e-07j, -4.95069921e-13-1.22744130e-12j, -1.44529174e-07+9.78280211e-08j, -4.54412580e-12+3.10101417e-12j,\n",
" -6.07143303e-04-4.03488631e-02j]])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tmscuff_bugfixed.as_ndarray() # T-Matrix of FIXED version of Scuff-EM"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(matrix([[-9.43033280e-02+3.59361755e-01j, 3.20658236e-12+8.41416904e-12j],\n",
" [-8.84386127e-12+1.96169624e-12j, -9.42395846e-02+3.59248336e-01j]]),\n",
" matrix([[-9.43033280e-02-3.59361755e-01j, -8.84386127e-12-1.96169624e-12j],\n",
" [ 3.20658236e-12-8.41416904e-12j, -9.42395846e-02-3.59248336e-01j]]))"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#I play around with the different operations so everything is correct\n",
"tmscuffnew = tmscuff_bugfixed.as_ndarray()\n",
"tmscuffnew_mat = np.asmatrix(tmscuffnew)\n",
"tmscuffnew_dag = tmscuffnew_mat.getH()\n",
"tmscuffnew_mat[0:2,0:2], tmscuffnew_dag[0:2,0:2]"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(matrix([[1, 0],\n",
" [9, 4]]), matrix([[4, 9],\n",
" [0, 1]]))"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A = np.matrix([[0,1],[2,3]])\n",
"B = np.matrix([[3,2],[1,0]])\n",
"AB = np.dot(A,B)\n",
"BA = np.dot(B,A)\n",
"AB,BA"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"sum1new = np.dot(tmscuffnew_dag,tmscuffnew) #is this the right order? Regarding the above, yes it is.\n",
"sum2new = 0.5*tmscuffnew.__add__(tmscuffnew_dag) "
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"powermatrix_scuffnew = sum1new.__add__(sum2new) #powermatrix for bugfixed scuff"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"#Power matrix for NOT bugfixed scuff\n",
"tmscuffold = tmscuff_not_fixed.as_ndarray()\n",
"tmscuffold_mat = np.asmatrix(tmscuffold)\n",
"tmscuffold_dag = tmscuffold_mat.getH()\n",
"sum1old = np.dot(tmscuffold_dag,tmscuffold) #is this the right order? Regarding the above, yes it is.\n",
"sum2old = 0.5*tmscuffold.__add__(tmscuffold_dag)\n",
"\n",
"powermatrix_scuffold = sum1old.__add__(sum2old) "
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"#Power matrix for T matrix generator\n",
"tmscuffgen = tmgen_omega.as_ndarray()\n",
"tmscuffgen_mat = np.asmatrix(tmscuffgen)\n",
"tmscuffgen_dag = tmscuffgen_mat.getH()\n",
"sum1gen = np.dot(tmscuffgen_dag,tmscuffgen) #is this the right order? Regarding the above, yes it is.\n",
"sum2gen = 0.5*tmscuffgen.__add__(tmscuffgen_dag)\n",
"\n",
"powermatrix_scuffgen = sum1gen.__add__(sum2gen) "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-0.008544129580638216+0j),\n",
" (-0.008544129580638216+0j),\n",
" (-0.008544129580638216+0j),\n",
" (-0.0006352854997266949+0j),\n",
" (-0.0006352854997266949+0j),\n",
" (-0.0006352854997266949+0j))"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Power matrix of generator is diagonal and all its eigenvalues are negative:\n",
"powermatrix_scuffgen[0,0], powermatrix_scuffgen[1,1], powermatrix_scuffgen[2,2], powermatrix_scuffgen[3,3], powermatrix_scuffgen[4,4], powermatrix_scuffgen[5,5]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((0.04373066071852283+0j),\n",
" (0.04370088172427582+0j),\n",
" (0.043730660553373296+0j),\n",
" (0.001021256123757952+0j),\n",
" (0.0010213406041430792+0j),\n",
" (0.0010212560750220145+0j))"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"powermatrix_scuffnew[0,0], powermatrix_scuffnew[1,1], powermatrix_scuffnew[2,2], powermatrix_scuffnew[3,3], powermatrix_scuffnew[4,4], powermatrix_scuffnew[5,5]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-0.004364703222422517+0j),\n",
" (-0.004361872918812184+0j),\n",
" (-0.004364703232328262+0j),\n",
" (-2.6256479824067564e-05+0j),\n",
" (-2.6262303053141142e-05+0j),\n",
" (-2.6256487319428013e-05+0j))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"powermatrix_scuffold[0,0], powermatrix_scuffold[1,1], powermatrix_scuffold[2,2], powermatrix_scuffold[3,3], powermatrix_scuffold[4,4], powermatrix_scuffold[5,5]"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-10.019160178833705-0j),\n",
" (-10.018834234211564-0j),\n",
" (-10.019160118257586-0j),\n",
" (-38.895393845668316-0j),\n",
" (-38.88998623145963-0j),\n",
" (-38.89538088616882-0j))"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#So! There is a fixed factor between the N/M elements of Scuff new and old:\n",
"powermatrix_scuffnew[0,0]/powermatrix_scuffold[0,0], powermatrix_scuffnew[1,1]/powermatrix_scuffold[1,1], powermatrix_scuffnew[2,2]/powermatrix_scuffold[2,2], powermatrix_scuffnew[3,3]/powermatrix_scuffold[3,3], powermatrix_scuffnew[4,4]/powermatrix_scuffold[4,4], powermatrix_scuffnew[5,5]/powermatrix_scuffold[5,5]"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-5.118211317583541-0j),\n",
" (-5.11472600126595-0j),\n",
" (-5.118211298254535-0j),\n",
" (-1.6075545942687262-0j),\n",
" (-1.6076875744566317-0j),\n",
" (-1.60755451755371-0j))"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#And there is a fixed factor for new / generated as well! (hence also for old / generated)\n",
"powermatrix_scuffnew[0,0]/powermatrix_scuffgen[0,0], powermatrix_scuffnew[1,1]/powermatrix_scuffgen[1,1], powermatrix_scuffnew[2,2]/powermatrix_scuffgen[2,2], powermatrix_scuffnew[3,3]/powermatrix_scuffgen[3,3], powermatrix_scuffnew[4,4]/powermatrix_scuffgen[4,4], powermatrix_scuffnew[5,5]/powermatrix_scuffgen[5,5]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-1.60755451755371-0j), (-2.557363000632975+0j))"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"powermatrix_scuffnew[5,5]/powermatrix_scuffgen[5,5], powermatrix_scuffnew[1,1]/powermatrix_scuffgen[1,1]/2"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((1.599227713011597e-16-0j),\n",
" (8.902299490051238e-14+0j),\n",
" (1.504486797691096e-21-0j))"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Let's also calculate the determinants\n",
"detnew = powermatrix_scuffnew[0,0]*powermatrix_scuffnew[1,1]*powermatrix_scuffnew[2,2]*powermatrix_scuffnew[3,3]*powermatrix_scuffnew[4,4]*powermatrix_scuffnew[5,5]\n",
"detold = powermatrix_scuffold[0,0]*powermatrix_scuffold[1,1]*powermatrix_scuffold[2,2]*powermatrix_scuffold[3,3]*powermatrix_scuffold[4,4]*powermatrix_scuffold[5,5]\n",
"detgen = powermatrix_scuffgen[0,0]*powermatrix_scuffgen[1,1]*powermatrix_scuffgen[2,2]*powermatrix_scuffgen[3,3]*powermatrix_scuffgen[4,4]*powermatrix_scuffgen[5,5]\n",
"detgen, detnew, detold"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((1.5992277130116025e-16+0j),\n",
" (8.902299447416401e-14+2.6128569373609595e-39j),\n",
" (1.504486701753944e-21-2.892571608172536e-45j))"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.linalg.det(powermatrix_scuffgen), np.linalg.det(powermatrix_scuffnew), np.linalg.det(powermatrix_scuffold)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"#We try to normalize the power matrix elements for each case with the corresponding determinants."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-53426597795433.88+0j),\n",
" (-53426597795433.88+0j),\n",
" (-53426597795433.88+0j),\n",
" (-3972451793812.1055+0j),\n",
" (-3972451793812.1055+0j),\n",
" (-3972451793812.1055+0j))"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#T-matrix generator: \n",
"powermatrix_scuffgen[0,0]/detgen, powermatrix_scuffgen[1,1]/detgen, powermatrix_scuffgen[2,2]/detgen, powermatrix_scuffgen[3,3]/detgen, powermatrix_scuffgen[4,4]/detgen, powermatrix_scuffgen[5,5]/detgen "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((-2.901124309712079e+18+0j),\n",
" (-2.899243067806416e+18+0j),\n",
" (-2.901124316296214e+18+0j),\n",
" (-1.7452117136795634e+16+0j),\n",
" (-1.7455987711853198e+16+0j),\n",
" (-1.7452122118800434e+16+0j))"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Not bugfixed Scuff-EM: \n",
"powermatrix_scuffold[0,0]/detold, powermatrix_scuffold[1,1]/detold, powermatrix_scuffold[2,2]/detold, powermatrix_scuffold[3,3]/detold, powermatrix_scuffold[4,4]/detold, powermatrix_scuffold[5,5]/detold "
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((491228819782.9563+0j),\n",
" (490894310768.96173+0j),\n",
" (491228817927.8229+0j),\n",
" (11471823936.043226+0j),\n",
" (11472772908.667904+0j),\n",
" (11471823388.58987+0j))"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#New Scuff-EM: \n",
"powermatrix_scuffnew[0,0]/detnew, powermatrix_scuffnew[1,1]/detnew, powermatrix_scuffnew[2,2]/detnew, powermatrix_scuffnew[3,3]/detnew, powermatrix_scuffnew[4,4]/detnew, powermatrix_scuffnew[5,5]/detnew "
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"#It might make more sense to renormalize the electric and magnetic parts of the power matrices separately:"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((13698.226641508763-0j),\n",
" (13698.226641508763-0j),\n",
" (13698.226641508763-0j),\n",
" (2477776.413504498-0j),\n",
" (2477776.413504498-0j),\n",
" (2477776.413504498-0j))"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#T-matrix generator:\n",
"detgen_el = powermatrix_scuffgen[0,0]*powermatrix_scuffgen[1,1]*powermatrix_scuffgen[2,2]\n",
"detgen_mag = powermatrix_scuffgen[3,3]*powermatrix_scuffgen[4,4]*powermatrix_scuffgen[5,5]\n",
"powermatrix_scuffgen[0,0]/detgen_el, powermatrix_scuffgen[1,1]/detgen_el, powermatrix_scuffgen[2,2]/detgen_el, powermatrix_scuffgen[3,3]/detgen_mag, powermatrix_scuffgen[4,4]/detgen_mag, powermatrix_scuffgen[5,5]/detgen_mag "
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((52525.751093170744-0j),\n",
" (52491.69062780147-0j),\n",
" (52525.75121237855-0j),\n",
" (1450208903.6280527-0j),\n",
" (1450530534.6580672-0j),\n",
" (1450209317.614944-0j))"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#NOT bugfixed Scuff-EM:\n",
"detold_el = powermatrix_scuffold[0,0]*powermatrix_scuffold[1,1]*powermatrix_scuffold[2,2]\n",
"detold_mag = powermatrix_scuffold[3,3]*powermatrix_scuffold[4,4]*powermatrix_scuffold[5,5]\n",
"powermatrix_scuffold[0,0]/detold_el, powermatrix_scuffold[1,1]/detold_el, powermatrix_scuffold[2,2]/detold_el, powermatrix_scuffold[3,3]/detold_mag, powermatrix_scuffold[4,4]/detold_mag, powermatrix_scuffold[5,5]/detold_mag "
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((523.2675016470721+0j),\n",
" (522.9111754524715+0j),\n",
" (523.2674996709441+0j),\n",
" (958726.5381294343+0j),\n",
" (958805.8459399715+0j),\n",
" (958726.4923775065+0j))"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Bugfixed Scuff-EM:\n",
"detnew_el = powermatrix_scuffnew[0,0]*powermatrix_scuffnew[1,1]*powermatrix_scuffnew[2,2]\n",
"detnew_mag = powermatrix_scuffnew[3,3]*powermatrix_scuffnew[4,4]*powermatrix_scuffnew[5,5]\n",
"powermatrix_scuffnew[0,0]/detnew_el, powermatrix_scuffnew[1,1]/detnew_el, powermatrix_scuffnew[2,2]/detnew_el, powermatrix_scuffnew[3,3]/detnew_mag, powermatrix_scuffnew[4,4]/detnew_mag, powermatrix_scuffnew[5,5]/detnew_mag "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,362 +0,0 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, make_dict_action, sslice, annotate_pdf_metadata
figscale=3
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
ap.add_argument("-k", '--wavevector', nargs=2, type=float, required=True, help='"Bloch" vector, modulating phase of the driving', metavar=('KX', 'KY'), default=(0., 0.))
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
ap.add_argument("-S", "--symmetry-adapted", default=None, help="Use a symmetry-adapted basis of a given point group instead of individual spherical harmonics")
ap.add_argument("-d", "--ccd-distance", type=float, default=math.nan, help='Far-field "CCD" distance from the sample')
ap.add_argument("-D", "--ccd-size", type=float, default=math.nan, help='Far-field "CCD" width and heighth')
ap.add_argument("-R", "--ccd-resolution", type=int, default=101, help='Far-field "CCD" resolution')
ap.add_argument("--xslice", default={None:None}, nargs=2,
action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
)
ap.add_argument("--yslice", default={None:None}, nargs=2,
action=make_dict_action(argtype=sslice, postaction='append', first_is_key=True),
)
#ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
Nx, Ny = a.size
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%s_k_%g_%g_f%geV_L%d_micro-%s" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.wavevector[0], a.wavevector[1], a.eV, a.lMax, "SO3" if a.symmetry_adapted is None else a.symmetry_adapted)
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle, qpms_library_version
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
from qpms.symmetries import point_group_info
eh = eV/hbar
# Check slice ranges and generate all corresponding combinations
slicepairs = []
slicelabels = set(a.xslice.keys()) | set(a.yslice.keys())
for label in slicelabels:
rowslices = a.xslice.get(label, None)
colslices = a.yslice.get(label, None)
# TODO check validity of the slices.
if rowslices is None:
rowslices = [slice(None, None, None)]
if colslices is None:
colslices = [slice(None, None, None)]
for rs in rowslices:
for cs in colslices:
slicepairs.append((rs, cs))
def realdipfieldlabels(yp):
if yp == 0: return 'x'
if yp == 1: return 'y'
if yp == 2: return 'z'
raise ValueError
def realdipfields(vecgrid, yp):
if yp == 1:
return vecgrid[...,0] + vecgrid[...,2]
if yp == 0:
return -1j*(vecgrid[...,0] - vecgrid[...,2])
if yp == 2:
return vecgrid[...,1]
raise ValueError
def float_nicestr(x, tol=1e-5):
x = float(x)
if .5**2 - abs(x) < tol:
return(("-" if x < 0 else '+') + "2^{-2}")
else:
return "%+.3g" % x
def cplx_nicestr(x, tol=1e-5):
x = complex(x)
if x == 0:
return '0'
ret = ""
if x.real:
ret = ret + float_nicestr(x.real, tol)
if x.imag:
ret = ret + float_nicestr(x.imag, tol) + 'i'
if x.real and x.imag:
return '(' + ret + ')'
else:
return ret
def cleanarray(a, atol=1e-10, copy=True):
a = np.array(a, copy=copy)
sieve = abs(a.real) < atol
a[sieve] = 1j * a[sieve].imag
sieve = abs(a.imag) < atol
a[sieve] = a[sieve].real
return a
def nicerot(a, atol=1e-10, copy=True): #gives array a "nice" phase
a = np.array(a, copy=copy)
i = np.argmax(abs(a))
a = a / a[i] * abs(a[i])
return a
dbgmsg_enable(DebugFlags.INTEGRATION)
#Particle positions
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
omega = ap.omega
bspec = BaseSpec(lMax = a.lMax)
medium = EpsMuGenerator(ap.background_epsmu)
particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])]
sym = FinitePointGroup(point_group_info['D2h'])
ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omega, sym=sym)
wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
# Mapping between ss particles and grid positions
positions = ss.positions
xpositions = np.unique(positions[:,0])
assert(len(xpositions) == Nx)
ypositions = np.unique(positions[:,1])
assert(len(ypositions == Ny))
# particle positions as integer indices
posmap = np.empty((positions.shape[0],2), dtype=int)
invposmap = np.empty((Nx, Ny), dtype=int)
for i, pos in enumerate(positions):
posmap[i,0] = np.searchsorted(xpositions, positions[i,0])
posmap[i,1] = np.searchsorted(ypositions, positions[i,1])
invposmap[posmap[i,0], posmap[i, 1]] = i
def fullvec2grid(fullvec, swapxy=False):
arr = np.empty((Nx,Ny,nelem), dtype=complex)
for pi, offset in enumerate(ss.fullvec_poffsets):
ix, iy = posmap[pi]
arr[ix, iy] = fullvec[offset:offset+nelem]
return np.swapaxes(arr, 0, 1) if swapxy else arr
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
nelem = len(bspec)
phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector)))
driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex)
if a.symmetry_adapted is not None:
ss1, ssw1 = ScatteringSystem.create(particles=[Particle((0,0,0), ap.tmgen, bspec)], medium=medium, omega=omega,
sym=FinitePointGroup(point_group_info[a.symmetry_adapted]))
fvcs1 = np.empty((nelem, nelem), dtype=complex)
y = 0
iris1 = []
for iri1 in range(ss1.nirreps):
for j in range(ss1.saecv_sizes[iri1]):
pvc1 = np.zeros((ss1.saecv_sizes[iri1],), dtype=complex)
pvc1[j] = 1
fvcs1[y] = ss1.unpack_vector(pvc1, iri1)
fvcs1[y] = cleanarray(nicerot(fvcs1[y], copy=False), copy=False)
driving_full[y] = (phases[:, None] * fvcs1[y][None,:]).flatten()
y += 1
iris1.append(iri1)
iris1 = np.array(iris1)
else:
for y in range(nelem):
driving_full[y,y::nelem] = phases
# Apply the driving on the specified slices only
nsp = len(slicepairs)
driving_full_sliced = np.zeros((nsp,) + driving_full.shape, dtype=complex)
p1range = np.arange(nelem)
for spi in range(nsp):
xs, ys = slicepairs[spi]
driven_pi = invposmap[xs, ys].flatten()
driven_y = ((driven_pi * nelem)[:,None] + p1range[None,:]).flatten()
driving_full_sliced[spi][:, driven_y] = driving_full[:, driven_y]
scattered_full = np.zeros((nsp, nelem, ss.fecv_size),dtype=complex)
scattered_ir = [None for iri in range(ss.nirreps)]
ir_contained = np.ones((nsp, nelem, ss.nirreps), dtype=bool)
for iri in range(ss.nirreps):
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
LU = None # to trigger garbage collection before the next call
translation_matrix = None
LU = ssw.scatter_solver(iri)
logging.info("LU solver created")
#translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
#logging.info("auxillary translation matrix created")
scattered_ir[iri] = np.zeros((nsp, nelem, ss.saecv_sizes[iri]), dtype=complex)
scattered_ir_unpacked = np.zeros((nsp, nelem, ss.fecv_size), dtype=complex)
for spi in range(nsp):
for y in range(nelem):
ã = driving_full_sliced[spi,y]
ãi = cleanarray(ss.pack_vector(ã, iri), copy=False)
if np.all(ãi == 0):
ir_contained[spi, y, iri] = False
continue
= ssw.apply_Tmatrices_full(ã)
Tãi = ss.pack_vector(, iri)
fi = LU(Tãi)
scattered_ir[iri][spi, y] = fi
scattered_ir_unpacked[spi, y] = ss.unpack_vector(fi, iri)
scattered_full[spi, y] += scattered_ir_unpacked[spi, y]
if a.save_gradually:
iriout = outfile_tmp + ".%d" % iri
np.savez(iriout, iri=iri, meta={**vars(a), 'qpms_version' : qpms.__version__()},
omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
positions = ss.positions[:,:2],
scattered_ir_packed = scattered_ir[iri],
scattered_ir_full = scattered_ir_unpacked,
)
logging.info("partial results saved to %s"%iriout)
t, l, m = bspec.tlm()
if not math.isnan(a.ccd_distance):
logging.info("Computing the far fields")
if math.isnan(a.ccd_size):
a.ccd_size = (50 * a.ccd_distance / (max(Nx*px, Ny*py) *ssw.wavenumber.real))
ccd_size = a.ccd_size
ccd_x = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution)
ccd_y = np.linspace(-ccd_size/2, ccd_size/2, a.ccd_resolution)
ccd_grid = np.meshgrid(ccd_x, ccd_y, (a.ccd_distance,), indexing='ij')
ccd_points = np.swapaxes(np.stack(ccd_grid, axis=-1).squeeze(axis=-2), 0,1) # First axis is y, second is x, because of imshow...
ccd_fields = np.empty((nsp, nelem,) + ccd_points.shape, dtype=complex)
for spi in range(nsp):
for y in range(nelem):
ccd_fields[spi, y] = ssw.scattered_E(scattered_full[spi, y], ccd_points, btyp=BesselType.HANKEL_PLUS)
logging.info("Far fields done")
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()},
omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
positions = ss.positions[:,:2],
scattered_ir_packed = np.array(scattered_ir, dtype=np.object),
scattered_full = scattered_full,
ir_contained = ir_contained,
t=t, l=l, m=m,
iris1 = iris1 if (a.symmetry_adapted is not None) else None,
irnames1 = ss1.irrep_names if (a.symmetry_adapted is not None) else None,
fvcs1 = fvcs1 if (a.symmetry_adapted is not None) else None,
#ccd_size = ccd_size if not math.isnan(a.ccd_distance) else None,
ccd_points = ccd_points if not math.isnan(a.ccd_distance) else None,
ccd_fields = ccd_fields if not math.isnan(a.ccd_distance) else None,
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt, cm
from matplotlib.backends.backend_pdf import PdfPages
t, l, m = bspec.tlm()
phasecm = cm.twilight
pmcm = cm.bwr
abscm = cm.plasma
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
pp = PdfPages(plotfile)
for spi in range(nsp):
fig, axes = plt.subplots(nelem, 12 if math.isnan(a.ccd_distance) else 16, figsize=(figscale*(12 if math.isnan(a.ccd_distance) else 16), figscale*nelem))
for yp in range(0,3): # TODO xy-dipoles instead?
axes[0,4*yp+0].set_title("abs / (E,1,%s)" % realdipfieldlabels(yp))
axes[0,4*yp+1].set_title("arg / (E,1,%s)" % realdipfieldlabels(yp))
axes[0,4*yp+2].set_title("Fabs / (E,1,%s)" % realdipfieldlabels(yp))
axes[0,4*yp+3].set_title("Farg / (E,1,%s)" % realdipfieldlabels(yp))
if not math.isnan(a.ccd_distance):
#axes[0,12].set_title("$E_{xy}$ @ $z = %g; \phi$" % a.ccd_distance)
#axes[0,13].set_title("$E_{xy}$ @ $z = %g; \phi + \pi/2$" % a.ccd_distance)
axes[0,12].set_title("$|E_{x}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
axes[0,13].set_title("$|E_{y}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
axes[0,14].set_title("$|E_x + E_y|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
axes[0,15].set_title("$|E_{z}|^2$ @ $z = %g\,\mathrm{m}$" % a.ccd_distance)
for gg in range(12,16):
axes[-1,gg].set_xlabel("$x/\mathrm{m}$")
for y in range(nelem):
fulvec = scattered_full[spi,y]
if a.symmetry_adapted is not None:
driving_nonzero_y = [j for j in range(nelem) if abs(fvcs1[y,j]) > 1e-5]
driving_descr = ss1.irrep_names[iris1[y]]+'\n'+', '.join(('$'+cplx_nicestr(fvcs1[y,j])+'$' +
"(%s,%d,%+d)" % (("E" if t[j] == 2 else "M"), l[j], m[j]) for j in
driving_nonzero_y)) # TODO shorten the complex number precision
else:
driving_descr = "%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],)
axes[y,0].set_ylabel(driving_descr)
axes[y,-1].yaxis.set_label_position("right")
axes[y,-1].set_ylabel("$y/\mathrm{m}$\n"+driving_descr)
vecgrid = fullvec2grid(fulvec, swapxy=True)
vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1))
lemax = np.amax(abs(vecgrid))
for yp in range(0,3):
if(np.amax(abs(realdipfields(vecgrid,yp))) > lemax*1e-5):
axes[y,yp*4].imshow(abs(realdipfields(vecgrid,yp)), vmin=0, interpolation='none')
axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(realdipfields(vecgrid,yp))), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes)
axes[y,yp*4+1].imshow(np.angle(realdipfields(vecgrid,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none')
axes[y,yp*4+2].imshow(abs(realdipfields(vecgrid_ff,yp)), vmin=0, interpolation='none')
axes[y,yp*4+3].imshow(np.angle(realdipfields(vecgrid_ff,yp)), vmin=-np.pi, vmax=np.pi, cmap=phasecm, interpolation='none')
else:
for c in range(0,4):
axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False)
if not math.isnan(a.ccd_distance):
fxye=(-ccd_size/2, ccd_size/2, -ccd_size/2, ccd_size/2)
e2vmax = np.amax(np.linalg.norm(ccd_fields[spi,y], axis=-1)**2)
xint = abs(ccd_fields[spi,y,...,0])**2
yint = abs(ccd_fields[spi,y,...,1])**2
xyint = abs(ccd_fields[spi,y,...,0] + ccd_fields[spi,y,...,1])**2
zint = abs(ccd_fields[spi,y,...,2])**2
xintmax = np.amax(xint)
yintmax = np.amax(yint)
zintmax = np.amax(zint)
xyintmax = np.amax(xyint)
axes[y, 12].imshow(xint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
axes[y, 13].imshow(yint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
axes[y, 14].imshow(xyint, origin="lower", extent=fxye, cmap=abscm, interpolation='none')
axes[y, 15].imshow(zint, origin='lower', extent=fxye, cmap=abscm, interpolation='none')
axes[y, 12].text(0.5, 0.5, '%g\n%g' % (xintmax,xintmax/e2vmax),
horizontalalignment='center', verticalalignment='center', transform=axes[y,12].transAxes)
axes[y, 13].text(0.5, 0.5, '%g\n%g' % (yintmax,yintmax/e2vmax),
horizontalalignment='center', verticalalignment='center', transform=axes[y,13].transAxes)
axes[y, 14].text(0.5, 0.5, '%g\n%g' % (xyintmax,xyintmax/e2vmax),
horizontalalignment='center', verticalalignment='center', transform=axes[y,14].transAxes)
axes[y, 15].text(0.5, 0.5, '%g\n%g' % (zintmax,zintmax/e2vmax),
horizontalalignment='center', verticalalignment='center', transform=axes[y,15].transAxes)
for gg in range(12,16):
axes[y,gg].yaxis.tick_right()
for gg in range(12,15):
axes[y,gg].yaxis.set_major_formatter(plt.NullFormatter())
fig.text(0, 0, str(slicepairs[spi]), horizontalalignment='left', verticalalignment='bottom')
pp.savefig()
annotate_pdf_metadata(pp, scriptname="finiterectlat-constant-driving.py")
pp.close()
exit(0)

View File

@ -1,10 +1,10 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, annotate_pdf_metadata
from qpms.argproc import ArgParser
ap = ArgParser(['rectlattice2d_finite', 'background_analytical', 'single_particle', 'single_lMax', ])
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', ])
ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11)
ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance')
@ -19,9 +19,8 @@ ap.add_argument("-f", "--centre", type=complex, required=True, help='Contour cen
ap.add_argument("--ai", type=float, default=0.05, help="Contour imaginary half-axis in eV")
ap.add_argument("--ar", type=float, default=0.05, help="Contour real half-axis in eV")
ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size")
ap.add_argument("--D2", action='store_true', help="Use D2h symmetry even if the array has square symmetry")
ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7 (9 for D4h), irrep label, or 'none' for no irrep decomposition")
ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition")
a=ap.parse_args()
@ -31,15 +30,11 @@ logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
Nx, Ny = a.size
px, py = a.period
thegroup = 'D4h' if px == py and Nx == Ny and not a.D2 else 'D2h'
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_B%s_L%d_c(%s±%g±%gj)eV_cn%d_%s" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.lMax,
str(a.centre), a.ar, a.ai, a.N,
thegroup,
)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_n%g_L%d_c(%s±%g±%gj)eV_cn%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.lMax,
str(a.centre), a.ai, a.ar, a.N)
logging.info("Default file prefix: %s" % defaultprefix)
def inside_ellipse(point_xy, centre_xy, halfaxes_xy):
@ -74,9 +69,9 @@ bspec = BaseSpec(lMax = a.lMax)
medium = EpsMuGenerator(ap.background_epsmu)
particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])]
sym = FinitePointGroup(point_group_info[thegroup])
sym = FinitePointGroup(point_group_info['D2h'])
logging.info("Creating scattering system object")
ss, ssw = ScatteringSystem.create(particles, medium, a.centre * eh, sym=sym)
ss, ssw = ScatteringSystem.create(particles, medium, sym, a.centre * eh)
if a.irrep == 'none':
iri = None # no irrep decomposition
@ -100,7 +95,7 @@ results['inside_contour'] = inside_ellipse((results['eigval'].real, results['eig
results['refractive_index_internal'] = [medium(om).n for om in results['eigval']]
outfile = defaultprefix + (('_ir%s_%s.npz' % (str(iri), irname)) if iri is not None else '.npz') if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, **results)
np.savez(outfile, meta=vars(a), **results)
logging.info("Saved to %s" % outfile)
exit(0)
@ -110,7 +105,7 @@ if a.plot or (a.plot_out is not None):
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$')
@ -119,11 +114,9 @@ if a.plot or (a.plot_out is not None):
ax.legend()
ax.set_xlabel('$\sin\\alpha$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
pdf.savefig(fig)
annotate_pdf_metadata(pdf, scriptname='finiterectlat-modes.py')
fig.savefig(plotfile)
exit(0)

View File

@ -1,12 +1,14 @@
#!/usr/bin/env python3
from qpms.argproc import ArgParser, annotate_pdf_metadata
import math
pi = math.pi
from qpms.argproc import ArgParser
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'omega_seq_real_ng', 'planewave'])
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX'))
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-N", type=int, default="151", help="Number of angles")
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
@ -17,9 +19,18 @@ a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
Nx, Ny = a.size
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_n%g_angles(%g_%g)_Ey_f%geV_L%d_cn%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.kx_lim[0], a.kx_lim[1], a.eV, a.lMax, a.N)
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle
@ -31,209 +42,94 @@ eh = eV/hbar
dbgmsg_enable(DebugFlags.INTEGRATION)
Nx, Ny = a.size
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_bg%s%gπ_θ(%g_%g)π_ψ%gπ_χ%gπ_f%s_L%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, ap.omega_descr, a.lMax, )
logging.info("Default file prefix: %s" % defaultprefix)
#Particle positions
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
omega = ap.omega
bspec = BaseSpec(lMax = a.lMax)
particles= [Particle(orig_xy[i], ap.tmgen, bspec=bspec) for i in np.ndindex(orig_xy.shape[:-1])]
Tmatrix = ap.tmgen(bspec, ap.omega)
particles= [Particle(orig_xy[i], Tmatrix) for i in np.ndindex(orig_xy.shape[:-1])]
sym = FinitePointGroup(point_group_info['D2h'])
ss, ssw = ScatteringSystem.create(particles, ap.background_emg, ap.allomegas[0], sym=sym)
ss = ScatteringSystem(particles, sym)
wavenumber = ap.background_epsmu.k(omega).real # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
## Plane wave data
a.theta = np.atleast_1d(np.array(a.theta))
dir_sph_list = np.stack((np.broadcast_to(1, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1)
, = math.sin(a.psi), math.cos(a.psi)
, = math.sin(a.chi), math.cos(a.chi)
E_sph = (0., * + 1j**, * + 1j**)
sinalpha_list = np.linspace(a.kx_lim[0],a.kx_lim[1],a.N)
dir_cart_list = sph2cart(dir_sph_list)
E_cart_list = sph_loccart2cart(E_sph, dir_sph_list)
# Plane wave data
E_cart_list = np.empty((a.N,3), dtype=complex)
E_cart_list[:,:] = np.array((0,1,0))[None,:]
k_cart_list = np.empty((a.N,3), dtype=float)
k_cart_list[:,0] = sinalpha_list
k_cart_list[:,1] = 0
k_cart_list[:,2] = np.sqrt(1-sinalpha_list**2)
k_cart_list *= wavenumber
nfreq = len(ap.allomegas)
ndir = a.theta.shape[0]
k_cart_arr = np.empty((nfreq, ndir, 3), dtype=float)
wavenumbers = np.empty((nfreq,), dtype=float)
σ_ext_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float)
σ_scat_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float)
σ_ext_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
σ_scat_list_ir = np.empty((a.N, ss.nirreps), dtype=float)
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
for i, omega in enumerate(ap.allomegas):
logging.info("Processing frequency %g eV" % (omega / eV,))
if i != 0:
ssw = ss(omega)
if ssw.wavenumber.imag != 0:
warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect emaningful results for cross sections.")
wavenumber = ssw.wavenumber.real
wavenumbers[i] = wavenumber
for iri in range(ss.nirreps):
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
LU = None # to trigger garbage collection before the next call
translation_matrix = None
LU = ss.scatter_solver(wavenumber,iri)
logging.info("LU solver created")
translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
logging.info("auxillary translation matrix created")
k_sph_list = np.array(dir_sph_list, copy=True)
k_sph_list[:,0] = wavenumber
for j in range(a.N):
# the following two could be calculated only once, but probably not a big deal
ã = ss.planewave_full(k_cart=k_cart_list[j], E_cart=E_cart_list[j])
= ss.apply_Tmatrices_full(ã)
k_cart_arr[i] = sph2cart(k_sph_list)
Tãi = ss.pack_vector(, iri)
ãi = ss.pack_vector(ã, iri)
fi = LU(Tãi)
σ_ext_list_ir[j, iri] = -np.vdot(ãi, fi).real/wavenumber**2
σ_scat_list_ir[j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2
if a.save_gradually:
iriout = outfile_tmp + ".%d" % iri
np.savez(iriout, iri=iri, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list,
omega=omega, wavenumber=wavenumber, σ_ext_list_ir=σ_ext_list_ir[:,iri], σ_scat_list_ir=σ_scat_list_ir[:,iri])
logging.info("partial results saved to %s"%iriout)
for iri in range(ss.nirreps):
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
LU = None # to trigger garbage collection before the next call
translation_matrix = None
LU = ssw.scatter_solver(iri)
logging.info("LU solver created")
translation_matrix = ssw.translation_matrix_packed(iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
logging.info("auxillary translation matrix created")
for j in range(ndir):
k_cart = k_cart_arr[i,j]
# the following two could be calculated only once, but probably not a big deal
ã = ss.planewave_full(k_cart=k_cart_arr[i,j], E_cart=E_cart_list[j])
= ssw.apply_Tmatrices_full(ã)
Tãi = ss.pack_vector(, iri)
ãi = ss.pack_vector(ã, iri)
fi = LU(Tãi)
σ_ext_arr_ir[i, j, iri] = -np.vdot(ãi, fi).real/wavenumber**2
σ_scat_arr_ir[i, j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2
if a.save_gradually:
iriout = outfile_tmp + ".%d.%d" % (i, iri)
np.savez(iriout, omegai=i, iri=iri, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omega=omega, k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph),
wavenumber=wavenumber, σ_ext_list_ir=σ_ext_arr_ir[i,:,iri], σ_scat_list_ir=σ_scat_list_ir[i,:,iri])
logging.info("partial results saved to %s"%iriout)
σ_abs_arr_ir = σ_ext_arr_ir - σ_scat_arr_ir
σ_abs_arr = np.sum(σ_abs_arr_ir, axis=-1)
σ_scat_arr = np.sum(σ_scat_arr_ir, axis=-1)
σ_ext_arr = np.sum(σ_ext_arr_ir, axis=-1)
σ_abs_list_ir = σ_ext_list_ir - σ_scat_list_ir
σ_abs= np.sum(σ_abs_list_ir, axis=-1)
σ_scat= np.sum(σ_scat_list_ir, axis=-1)
σ_ext= np.sum(σ_ext_list_ir, axis=-1)
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()},
k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph),
σ_ext=σ_ext_arr,σ_abs=σ_abs_arr,σ_scat=σ_scat_arr,
σ_ext_ir=σ_ext_arr_ir,σ_abs_ir=σ_abs_arr_ir,σ_scat_ir=σ_scat_arr_ir, omega=ap.allomegas, wavenumbers=wavenumbers
np.savez(outfile, meta=vars(a), sinalpha=sinalpha_list, k_cart = k_cart_list, E_cart=E_cart_list, σ_ext=σ_ext,σ_abs=σ_abs,σ_scat=σ_scat,
σ_ext_ir=σ_ext_list_ir,σ_abs_ir=σ_abs_list_ir,σ_scat_ir=σ_scat_list_ir, omega=omega, wavenumber=wavenumber
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
from matplotlib.backends.backend_pdf import PdfPages
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from scipy.interpolate import griddata
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(sinalpha_list, σ_ext*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sinalpha_list, σ_scat*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sinalpha_list, σ_abs*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\alpha$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
ipm = 'nearest'
sintheta = np.sin(a.theta)
if False: #len(ap.omega_ranges) != 0:
# angle plot ---------------------------------
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = max(np.amax(σ_ext_arr), np.amax(σ_scat_arr), np.amax(σ_abs_arr))
vmin = min(np.amin(σ_ext_arr), np.amin(σ_scat_arr), np.amin(σ_abs_arr))
ax = fig.add_subplot(311)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_ext_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_scat_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
im = ax.pcolormesh(a.theta, ap.allomegas/eh, σ_abs_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
if len(ap.omega_ranges) != 0:
# "k-space" plot -----------------------------
domega = np.amin(np.diff(ap.allomegas))
dsintheta = np.amin(abs(np.diff(sintheta)))
dk = dsintheta * wavenumbers[0]
# target image grid
grid_y, grid_x = np.mgrid[ap.allomegas[0] : ap.allomegas[-1] : domega, np.amin(sintheta) * wavenumbers[-1] : np.amax(sintheta) * wavenumbers[-1] : dk]
imextent = (np.amin(sintheta) * wavenumbers[-1] / 1e6, np.amax(sintheta) * wavenumbers[-1] / 1e6, ap.allomegas[0] / eh, ap.allomegas[-1] / eh)
# source coordinates for griddata
ktheta = sintheta[None, :] * wavenumbers[:, None]
omegapoints = np.broadcast_to(ap.allomegas[:, None], ktheta.shape)
points = np.stack( (ktheta.flatten(), omegapoints.flatten()), axis = -1)
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = np.amax(σ_ext_arr)
ax = fig.add_subplot(311)
grid_z = griddata(points, σ_ext_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
grid_z = griddata(points, σ_scat_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
grid_z = griddata(points, σ_abs_arr.flatten(), (grid_x, grid_y), method = ipm)
im = ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
for omega in ap.omega_singles:
i = np.searchsorted(ap.allomegas, omega)
fig = plt.figure()
fig.suptitle("%g eV" % (omega / eh))
ax = fig.add_subplot(111)
sintheta = np.sin(a.theta)
ax.plot(sintheta, σ_ext_arr[i]*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sintheta, σ_scat_arr[i]*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sintheta, σ_abs_arr[i]*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\theta$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
pdf.savefig(fig)
plt.close(fig)
annotate_pdf_metadata(pdf, scriptname="finiterectlat-scatter.py")
fig.savefig(plotfile)
exit(0)

376
misc/finitesqlatzsym-scatter.py Executable file
View File

@ -0,0 +1,376 @@
#!/usr/bin/env python3
import argparse, re, random, string, sys
import subprocess
import warnings
from scipy.constants import hbar, e as eV, pi, c
unitcell_size = 1 # rectangular lattice
unitcell_indices = tuple(range(unitcell_size))
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser.add_argument('--output_prefix', '-p', '-o', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)')
parser.add_argument('--nosuffix', action='store_true', help='Do not add dimension metadata to the output filenames')
#sizepar = parser.add_mutually_exclusive_group(required=True)
#parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--dx', action='store', type=float, required=True, help='x-direction lattice constant')
parser.add_argument('--dy', action='store', type=float, required=True, help='y-direction lattice constant')
parser.add_argument('--Nx', '--nx', action='store', type=int, required=True, help='Lattice points in the x-direction')
parser.add_argument('--Ny', '--ny', action='store', type=int, required=True, help='Lattice points in the y-direction')
# In these default settings, the area is 2x2 times larger than first BZ
parser.add_argument('--kxmin', action='store', type=float, default=-1., help='TODO')
parser.add_argument('--kxmax', action='store', type=float, default=1., help='TODO')
parser.add_argument('--kymin', action='store', type=float, default=-1., help='TODO')
parser.add_argument('--kymax', action='store', type=float, default=1., help='TODO')
#parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment')
parser.add_argument('--kxdensity', action='store', type=int, default=51, help='k-space resolution in the x-direction')
parser.add_argument('--kydensity', action='store', type=int, default=51, help='k-space resolution in the y-direction')
partgrp = parser.add_mutually_exclusive_group()
partgrp.add_argument('--only_TE', action='store_true', help='Calculate only the projection on the E⟂z modes')
partgrp.add_argument('--only_TM', action='store_true', help='Calculate only the projection on the E∥z modes')
partgrp.add_argument('--serial', action='store_true', help='Calculate the TE and TM parts separately to save memory')
parser.add_argument('--nocentre', action='store_true', help='Place the coordinate origin to the left bottom corner rather that to the centre of the array')
parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV')
parser.add_argument('--chunklen', action='store', type=int, default=3000, help='Number of k-points per output file (default 3000)')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
#parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
for i in unitcell_indices:
popgrp.add_argument('--tr%d'%i, dest='ops', action=make_action_sharedlist('tr%d'%i, 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
for i in unitcell_indices:
popgrp.add_argument('--sym%d'%i, dest='ops', action=make_action_sharedlist('sym%d'%i, 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
for i in unitcell_indices:
popgrp.add_argument('--multl%d'%i, dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl%d'%i, 'ops'))
#popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
if pargs.verbose:
print(pargs, file = sys.stderr)
maxlayer=pargs.maxlayer
eVfreq = pargs.eVfreq
freq = eVfreq*eV/hbar
verbose=pargs.verbose
dy = pargs.dy
dx = pargs.dx
Ny = pargs.Ny
Nx = pargs.Nx
TMatrix_file = pargs.TMatrix
epsilon_b = pargs.background_permittivity #2.3104
#gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kxdensity = pargs.kxdensity
kydensity = pargs.kydensity
chunklen = pargs.chunklen
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else unitcell_indices, opm.group(1), oparg[1]))
else:
raise # should not happen
if(verbose):
print(ops, file = sys.stderr)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
from qpms.timetrack import _time_b, _time_e
btime=_time_b(verbose)
import qpms
import numpy as np
import os, warnings, math
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
# specifikace T-matice zde
refind = math.sqrt(epsilon_b)
cdn = c / refind
k_0 = freq * refind / c # = freq / cdn
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
lMax = lMaxTM
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),unitcell_size,2,nelem,2,nelem)) )
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
#targets = (0,1)
targets = unitcell_indices
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
xpositions = np.arange(Nx) * dx
ypositions = np.arange(Ny) * dy
if not pargs.nocentre:
xpositions -= Nx * dx / 2
ypositions -= Ny * dy / 2
xpositions, ypositions = np.meshgrid(xpositions, ypositions, indexing='ij', copy=False)
positions=np.stack((xpositions.ravel(),ypositions.ravel()), axis=-1)
positions=positions[np.random.permutation(len(positions))]
N = positions.shape[0]
kx = np.linspace(pargs.kxmin, pargs.kxmax, num=pargs.kxdensity, endpoint=True) * 2*np.pi / dx
ky = np.linspace(pargs.kymin, pargs.kymax, num=pargs.kydensity, endpoint=True) * 2*np.pi / dy
kx, ky = np.meshgrid(kx, ky, indexing='ij', copy=False)
kz = np.sqrt(k_0**2 - (kx ** 2 + ky ** 2))
klist_full = np.stack((kx,ky,kz), axis=-1).reshape((-1,3))
TMatrices_om = TMatrices_interp(freq)
chunkn = math.ceil(klist_full.size / 3 / chunklen)
if verbose:
print('Evaluating %d k-points' % klist_full.size + ('in %d chunks'%chunkn) if chunkn>1 else '' , file = sys.stderr)
sys.stderr.flush()
try:
version = qpms.__version__
except NameError:
version = None
metadata = np.array({
'script': os.path.basename(__file__),
'version': version,
'type' : 'Plane wave scattering on a finite rectangular lattice',
'lMax' : lMax,
'dx' : dx,
'dy' : dy,
'Nx' : Nx,
'Ny' : Ny,
#'maxlayer' : maxlayer,
#'gaussianSigma' : gaussianSigma,
'epsilon_b' : epsilon_b,
#'hexside' : hexside,
'chunkn' : chunkn,
'chunki' : 0,
'TMatrix_file' : TMatrix_file,
'ops' : ops,
'centred' : not pargs.nocentre
})
scat = qpms.Scattering_2D_zsym(positions, TMatrices_om, k_0, verbose=verbose)
if pargs.only_TE:
actions = (0,)
elif pargs.only_TM:
actions = (1,)
elif pargs.serial:
actions = (0,1)
else:
actions = (None,)
xu = np.array((1,0,0))
yu = np.array((0,1,0))
zu = np.array((0,0,1))
TEč, TMč = qpms.symz_indexarrays(lMax)
klist_full_2D = klist_full[...,:2]
klist_full_dir = klist_full/np.linalg.norm(klist_full, axis=-1, keepdims=True)
for action in actions:
if action is None:
scat.prepare(verbose=verbose)
actionstring = ''
else:
scat.prepare_partial(action, verbose=verbose)
actionstring = '.TM' if action else '.TE'
for chunki in range(chunkn):
sbtime = _time_b(verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring)
if pargs.nosuffix:
outfile = pargs.output_prefix + actionstring + (
('.%03d' % chunki) if chunkn > 1 else '')
else:
outfile = '%s_%dx%d_%.0fnmx%.0fnm_%.4f%s%s.npz' % (
pargs.output_prefix, Nx, Ny, dx/1e-9, dy/1e-9,
eVfreq, actionstring,
(".%03d" % chunki) if chunkn > 1 else '')
klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen]
klist2d = klist_full_2D[chunki * chunklen : (chunki + 1) * chunklen]
klistdir = klist_full_dir[chunki * chunklen : (chunki + 1) * chunklen]
'''
The following loop is a fuckup that has its roots in the fact that
the function qpms.get_π̃τ̃_y1 in qpms_p.py is not vectorized
(and consequently, neither is plane_pq_y.)
And Scattering_2D_zsym.scatter_partial is not vectorized, either.
'''
if action == 0 or action is None:
xresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
yresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
if action == 1 or action is None:
zresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
for i in range(klist.shape[0]):
if math.isnan(klist[i,2]):
if(verbose):
print("%d. momentum %s invalid (k_0=%f), skipping" % (i, str(klist[i]),k_0))
continue
kdir = klistdir[i]
phases = np.exp(-1j*np.sum(klist2d[i] * positions, axis=-1))
if action == 0 or action is None:
pq = np.array(qpms.plane_pq_y(lMax, kdir, xu)).ravel()[TEč] * phases[:, nx]
xresult[i] = scat.scatter_partial(0, pq)
pq = np.array(qpms.plane_pq_y(lMax, kdir, yu)).ravel()[TEč] * phases[:, nx]
yresult[i] = scat.scatter_partial(0, pq)
if action == 1 or action is None:
pq = np.array(qpms.plane_pq_y(lMax, kdir, zu)).ravel()[TMč] * phases[:, nx]
zresult[i] = scat.scatter_partial(1, pq)
_time_e(sbtime, verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring)
metadata[()]['chunki'] = chunki
if action is None:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_x=xresult,
ab_y=yresult,
ab_z=zresult
)
elif action == 0:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_x=xresult,
ab_y=yresult,
)
elif action == 1:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_z=zresult
)
else:
raise
if scp_dest:
if outfile:
subprocess.run(['scp', outfile, scp_dest])
scat.forget_matrices() # free memory in case --serial was used
_time_e(btime, verbose)

340
misc/generaldisp.py Executable file
View File

@ -0,0 +1,340 @@
#!/usr/bin/env python3
'''
Bulk SVD mode computation for compact scatterer 2D lattices
'''
__TODOs__ = '''
BIG TODO: Use more efficient way to calculate the interaction sums: perhaps some customized Ewald-type summation?
Small TODOs:
- Implement a more user-friendly way to define the lattice base vectors and positions of the particles.
cf. https://stackoverflow.com/questions/2371436/evaluating-a-mathematical-expression-in-a-string/2371789
- low priority: allow to perform some more custom operations on T-Matrix, using some kind of parsing from the previous point
- Autodetect symmetries
'''
import argparse, re, random, string
import subprocess
from scipy.constants import hbar, e as eV, pi, c
import warnings
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
#TODO create some user-friendlier way to define lattice vectors, cf. https://stackoverflow.com/questions/2371436/evaluating-a-mathematical-expression-in-a-string/2371789
parser.add_argument('--lattice_base', nargs=4, action='store', type=float, required=True, help='Lattice basis vectors x1, y1, x2, y2')
parser.add_argument('--particle', '-p', nargs='+', action=make_action_sharedlist('particle', 'particlespec'), help='Particle label, coordinates x,y, and (optionally) path to the T-Matrix.')
parser.add_argument('--TMatrix', '-t', nargs='+', action=make_action_sharedlist('TMatrix_path', 'particlespec'), help='Path to TMatrix file')
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser.add_argument('--output_prefix', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)')
#sizepar = parser.add_mutually_exclusive_group(required=True)
#DEL parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV')
parser.add_argument('--kdensity', '--k_density', action='store', type=int, default=33, help='Number of k-points per x-axis segment FIXME DESCRIPTION')
parser.add_argument('--bz_coverage', action='store', type=float, default=1., help='Brillouin zone coverage in relative length (default 1 for whole 1. BZ)')
parser.add_argument('--bz_edge_width', action='store', type=float, default=0., help='Width of the more densely covered belt along the 1. BZ edge in relative lengths')
parser.add_argument('--bz_edge_factor', action='store', type=float, default=8., help='Relative density of the belt along the 1. BZ edge w.r.t. k_density (default==8)')
parser.add_argument('--bz_edge_twoside', action='store_true', help='Compute also the parts of the densely covered edge belt outside the 1. BZ')
parser.add_argument('--bz_corner_width', action='store', type=float, default=0., help='Size of the more densely covered subcell along the 1. BZ corners in relative lengths')
parser.add_argument('--bz_corner_factor', action='store', type=float, default=16., help='Relative density of the subcell along the 1. BZ corner w.r.t. k_density (default==16)')
parser.add_argument('--bz_corner_twoside', action='store_true', help='Compute also the parts of the densely covered subcell outside the 1. BZ')
parser.add_argument('--chunklen', action='store', type=int, default=1000, help='Number of k-points per output file (default 1000)')
parser.add_argument('--lMax', action=make_action_sharedlist('lMax', 'particlespec'), nargs=+, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', nargs='+', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
popgrp.add_argument('--sym', dest='ops', nargs='+', action=make_action_sharedlist('sym', 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
pargs=parser.parse_args()
print(pargs)
exit(0) ###
maxlayer=pargs.maxlayer
#DEL hexside=pargs.hexside
eVfreq = pargs.eVfreq
freq = eVfreq*eV/hbar
verbose=pargs.verbose
#DEL TMatrix_file = pargs.TMatrix
epsilon_b = pargs.background_permittivity #2.3104
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kdensity = pargs.kdensity
chunklen = pargs.chunklen
#### Nanoparticle position and T-matrix path parsing ####
TMatrix_paths = dict()
lMax_overrides = dict()
default_TMatrix_path = None
default_lMax_override = None
if not any((arg_type == 'particle') in (arg_type, arg_content) for in pargs.particlespec):
# no particles positions given: suppose only one per unit cell, in the cell origin
positions = {None: (0.0)}
else:
positions = dict()
for arg_type, arg_content in pargs.particlespec:
if arg_type == 'particle' # --particle option
if 3 <= len(arg_content) <= 4:
try:
positions[arg_content[0]] = (float(arg_content[1]), float(arg_content[2]))
except ValueError as e:
e.args += ("second and third argument of --particle must be valid floats, given: ", arg_content)
raise
if len(arg_content == 4):
if arg_content[0] in TMatrix_paths:
warnings.warn('T-matrix path for particle \'%s\' already specified.'
'Overriding with the last value.' % arg_content[0], SyntaxWarning)
TMatrix_paths[arg_content[0]] = arg_content[3]
else:
raise ValueError("--particle expects 3 or 4 arguments, %d given: " % len(arg_content), arg_content)
elif arg_type == 'TMatrix_path': # --TMatrix option
if len(arg_content) == 1: # --TMatrix default_path
if default_TMatrix_path is not None:
warnings.warn('Default T-matrix path already specified. Overriding with the last value.', SyntaxWarning)
default_TMatrix_path = arg_content[0]
elif len(arg_content) > 1: # --TMatrix label [label2 [...]] path
for label in arg_content[:-1]:
if label in TMatrix_paths.keys():
warnings.warn('T-matrix path for particle \'%s\' already specified.'
'Overriding with the last value.' % label, SyntaxWarning)
TMatrix_paths[label] = arg_content[-1]
elif arg_type == 'lMax': # --lMax option
if len(arg_content) == 1: # --lMax default_lmax_override
if default_lMax_override is not None:
warnings.warn('Default lMax override value already specified. Overriding the last value.', SyntaxWarning)
default_lMax_override = int(arg_content[-1])
else:
for label in arg_content[:-1]:
if label in lMax_overrides.keys:
warnings.warn('lMax override for particle \'%s\' already specified.'
'overriding with the last value.' % label, SyntaxWarning)
lMax_overrides[label] = int(arg_content[-1])
else: assert False, 'unknown option type'
# Check the info from positions and TMatrix_paths and lMax_overrides
if not set(TMatrix_paths.keys()) <= set(positions.keys()):
raise ValueError("T-Matrix path(s) for particle(s) labeled %s was given, but not their positions"
% str(set(TMatrix_paths.keys()) - set(positions.keys())))
if not set(lMax_overrides.keys()) <= set(positions.keys()):
raise ValueError("lMax override(s) for particle(s) labeled %s was given, but not their positions"
%str(set(lMax_overrides.keys()) - set(positions.keys())))
if (set(TMatrix_paths.keys()) != set(positions.keys())) and default_TMatrix_path is None:
raise ValueError("Position(s) of particles(s) labeled %s was given without their T-matrix"
" and no default T-matrix was specified"
% str(set(positions.keys()) - set(TMatrix_paths_keys())))
for path in TMatrix_paths.values():
if not os.path.exists(path):
raise ValueError("Cannot access T-matrix file %s. Does it exist?" % path)
# Assign (pre-parse) the T-matrix operations to individual particles
ops = dict()
for label in positions.keys(): ops[label] = list()
for optype, arg_content in pargs.ops:
# if, no label given, apply to all, otherwise on the specifield particles
for label in (positions.keys() if len(arg_content) == 1 else arg_content[:-1]):
try:
ops[label].append((optype, arg_content[-1]))
except KeyError as e:
e.args += 'Specified operation on undefined particle labeled \'%s\'' % label
raise
print(sys.stderr, "ops: ", ops) #DEBUG
#### Collect all the info about the particles / their T-matrices into one list ####
# Enumerate and assign all the _different_ T-matrices (without any intelligent group-theory checking, though)
TMatrix_specs = dict((spec, number)
for (number, spec) in enumerate(set(
(lMax_overrides[label] if label in lMax_overrides.keys() else None,
TMatrix_paths[label],
tuple(ops[label]))
for label in positions.keys()
)))
# particles_specs contains (label, (xpos, ypos), tmspec_index per element)
particles_specs = [(label, positions(label),
TMatrix_specs[(lMax_overrides[label] if label in lMax_overrides.keys() else None,
TMatrix_paths[label],
tuple(ops[label]))]
) for label in positions.keys()]
# -----------------finished basic CLI parsing (except for op arguments) ------------------
from qpms.timetrack import _time_b, _time_e
btime=_time_b(verbose)
import qpms
import numpy as np
import os, sys, warnings, math
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
# specifikace T-matice zde
cdn = c/ math.sqrt(epsilon_b)
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
lMax = lMaxTM
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
targets = (0,1)
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise ValueError('\'%d\' is not an implemented symmetry operation' % op[2])
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise ValueError('\'%d\' is not an implemented T-matrix transformation operation' % op[2])
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
klist_full = qpms.generate_trianglepoints(kdensity, v3d=True, include_origin=True)*3*math.pi/(3*kdensity*hexside)
TMatrices_om = TMatrices_interp(freq)
chunkn = math.ceil(klist_full.shape[0] / chunklen)
if verbose:
print('Evaluating %d k-points in %d chunks' % (klist_full.shape[0], chunkn), file = sys.stderr)
sys.stderr.flush()
metadata = np.array({
'lMax' : lMax,
'maxlayer' : maxlayer,
'gaussianSigma' : gaussianSigma,
'epsilon_b' : epsilon_b,
'hexside' : hexside,
'chunkn' : chunkn,
'TMatrix_file' : TMatrix_file,
'ops' : ops,
})
for chunki in range(chunkn):
svdout = '%s_%dnm_%.4f_c%03d.npz' % (pargs.output_prefix, hexside/1e-9, eVfreq, chunki)
klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen]
svdres = qpms.hexlattice_zsym_getSVD(lMax=lMax, TMatrices_om=TMatrices_om, epsilon_b=epsilon_b, hexside=hexside, maxlayer=maxlayer,
omega=freq, klist=klist, gaussianSigma=gaussianSigma, onlyNmin=False, verbose=verbose)
#((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist)) = svdres
np.savez(svdout, omega = freq, klist = klist,
metadata=metadata,
uTE = svdres[0][0],
vTE = svdres[0][2],
sTE = svdres[0][1],
uTM = svdres[1][0],
vTM = svdres[1][2],
sTM = svdres[1][1],
)
svdres=None
if scp_dest:
if svdout:
subprocess.run(['scp', svdout, scp_dest])
_time_e(btime, verbose)
#print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))

35
misc/iht-saving.py Normal file
View File

@ -0,0 +1,35 @@
import qpms
import numpy as np
from numpy import newaxis as nx
import math
import cmath
import os
from scipy.constants import c, e as eV, hbar
s3 = math.sqrt(3)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("omega")
#parser.add_argument("maxlayer")
args = parser.parse_args()
omega_eV = float(args.omega)
print(omega_eV)
epsilon_b = 2.3104
hexside = 375e-9
lMax = 3
maxlayer = 222
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
omega = omega_eV * eV / hbar
k_0 = omega * math.sqrt(epsilon_b) / c
output_prefix = '/tmp/diracpoints-newdata2/%d/' % maxlayer
os.makedirs(output_prefix, exist_ok=True)
qpms.hexlattice_precalc_AB_save(file=output_prefix+str(omega_eV), lMax=lMax, k_hexside=k_0*hexside,
maxlayer=maxlayer, savepointinfo=True)

View File

@ -1,128 +0,0 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, annotate_pdf_metadata
ap = ArgParser(['rectlattice2d', 'single_particle', 'single_lMax', 'omega_seq'])
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot")
ap.add_argument("--D2", action='store_true', help="Use D2h symmetry even if the x and y periods are equal")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
px, py = a.period
#Important! The particles are supposed to be of D2h/D4h symmetry
thegroup = 'D4h' if px == py and not a.D2 else 'D2h'
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_m%s_bg%s_f(%g..%g..%g)eV_L%d_SVGamma" % (
particlestr, px*1e9, py*1e9, str(a.material), str(a.background), *(a.eV_seq), a.lMax)
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
import warnings
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle, pgsl_ignore_error
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
from qpms.symmetries import point_group_info
eh = eV/hbar
# not used; TODO:
irrep_labels = {"B2''":"$B_2''$",
"B2'":"$B_2'$",
"A1''":"$A_1''$",
"A1'":"$A_1'$",
"A2''":"$A_2''$",
"B1''":"$B_1''$",
"A2'":"$A_2'$",
"B1'":"$B_1'$",
"E'":"$E'$",
"E''":"$E''$",}
dbgmsg_enable(DebugFlags.INTEGRATION)
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
#Particle positions
orig_x = [0]
orig_y = [0]
orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)
omegas = ap.omegas
logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, omegas[-1]/eh))
bspec = BaseSpec(lMax = a.lMax)
nelem = len(bspec)
# The parameters here should probably be changed (needs a better qpms_c.Particle implementation)
pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec)
ss, ssw = ScatteringSystem.create([pp], ap.background_emg, omegas[0], latticebasis=ap.direct_basis)
k = np.array([0.,0.,0])
# Auxillary finite scattering system for irrep decomposition, quite a hack
ss1, ssw1 = ScatteringSystem.create([pp], ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[thegroup]))
wavenumbers = np.empty(omegas.shape)
SVs = [None] * ss1.nirreps
for iri in range(ss1.nirreps):
SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],))
for i, omega in enumerate(omegas):
ssw = ss(omega)
wavenumbers[i] = ssw.wavenumber.real
if ssw.wavenumber.imag:
warnings.warn("Non-zero imaginary wavenumber encountered")
with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed
ImTW = ssw.modeproblem_matrix_full(k)
for iri in range(ss1.nirreps):
if ss1.saecv_sizes[iri] == 0:
continue
ImTW_packed = ss1.pack_matrix(ImTW, iri)
SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False)
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
ax = fig.add_subplot(111)
cc = plt.rcParams['axes.prop_cycle']()
for iri in range(ss1.nirreps):
cargs = next(cc)
nlines = min(a.singular_values, ss1.saecv_sizes[iri])
for i in range(nlines):
ax.plot(omegas/eh, SVs[iri][:,-1-i],
label= None if i else irrep_labels[ss1.irrep_names[iri]],
**cargs)
ax.set_ylim([0,1.1])
ax.set_xlabel('$\hbar \omega / \mathrm{eV}$')
ax.set_ylabel('Singular values')
ax.legend()
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
pdf.savefig(fig)
annotate_pdf_metadata(pdf, scriptname='infiniterectlat-k0realfreqsvd.py')
exit(0)

View File

@ -1,219 +0,0 @@
#!/usr/bin/env python3
import math
pi = math.pi
from qpms.argproc import ArgParser, annotate_pdf_metadata
ap = ArgParser(['rectlattice2d', 'single_particle', 'single_lMax', 'omega_seq_real_ng', 'planewave'])
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
#ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
import numpy as np
import qpms
from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis
import warnings
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle, pgsl_ignore_error
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
eh = eV/hbar
dbgmsg_enable(DebugFlags.INTEGRATION)
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_m%s_bg%s%g_θ(%g_%g)π_ψ%gπ_χ%gπ_f%s_L%d" % (
particlestr, px*1e9, py*1e9, str(a.material), str(a.background), a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, ap.omega_descr, a.lMax)
logging.info("Default file prefix: %s" % defaultprefix)
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
#Particle positions
orig_x = [0]
orig_y = [0]
orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)
bspec = BaseSpec(lMax = a.lMax)
# The parameters here should probably be changed (needs a better qpms_c.Particle implementation)
pp = Particle(orig_xy[0][0], ap.tmgen, bspec=bspec)
par = [pp]
ss, ssw = ScatteringSystem.create(par, ap.background_emg, ap.allomegas[0], latticebasis = ap.direct_basis)
## Plane wave data
a.theta = np.array(a.theta)
dir_sph_list = np.stack((np.broadcast_to(1, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1)
, = math.sin(a.psi), math.cos(a.psi)
, = math.sin(a.chi), math.cos(a.chi)
E_sph = (0., * + 1j**, * + 1j**)
dir_cart_list = sph2cart(dir_sph_list)
E_cart_list = sph_loccart2cart(E_sph, dir_sph_list)
nfreq = len(ap.allomegas)
ndir = len(dir_sph_list)
k_cart_arr = np.empty((nfreq, ndir, 3), dtype=float)
wavenumbers = np.empty((nfreq,), dtype=float)
σ_ext_arr = np.empty((nfreq,ndir), dtype=float)
σ_scat_arr = np.empty((nfreq,ndir), dtype=float)
with pgsl_ignore_error(15): # avoid gsl crashing on underflow
for i, omega in enumerate(ap.allomegas):
if i != 0:
ssw = ss(omega)
if ssw.wavenumber.imag != 0:
warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect meaningful results for cross sections.")
wavenumber = ssw.wavenumber.real
wavenumbers[i] = wavenumber
k_sph_list = np.array(dir_sph_list, copy=True)
k_sph_list[:,0] = wavenumber
k_cart_arr[i] = sph2cart(k_sph_list)
for j in range(ndir):
k_cart = k_cart_arr[i,j]
blochvector = (k_cart[0], k_cart[1], 0)
# the following two could be calculated only once, but probably not a big deal
LU = ssw.scatter_solver(k=blochvector)
ã = ss.planewave_full(k_cart=k_cart, E_cart=E_cart_list[j])
= ssw.apply_Tmatrices_full(ã)
f = LU()
σ_ext_arr[i,j] = -np.vdot(ã, f).real/wavenumber**2
translation_matrix = ssw.translation_matrix_full(blochvector=blochvector) + np.eye(ss.fecv_size)
σ_scat_arr[i,j] = np.vdot(f,np.dot(translation_matrix, f)).real/wavenumber**2
σ_abs_arr = σ_ext_arr - σ_scat_arr
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, dir_sph=dir_sph_list, k_cart = k_cart_arr, omega = ap.allomegas, E_cart = E_cart_list, wavenumbers= wavenumbers, σ_ext=σ_ext_arr,σ_abs=σ_abs_arr,σ_scat=σ_scat_arr, unitcell_area=ss.unitcell_volume
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
from matplotlib.backends.backend_pdf import PdfPages
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from scipy.interpolate import griddata
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
ipm = 'nearest'
sintheta = np.sin(a.theta)
if False: #len(ap.omega_ranges) != 0:
# angle plot ---------------------------------
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = max(np.amax(σ_ext_arr), np.amax(σ_scat_arr), np.amax(σ_abs_arr))
vmin = min(np.amin(σ_ext_arr), np.amin(σ_scat_arr), np.amin(σ_abs_arr))
ax = fig.add_subplot(311)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_ext_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_scat_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
im = ax.pcolormesh(a.theta, ap.allomegas/eh, σ_abs_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
if len(ap.omega_ranges) != 0:
# "k-space" plot -----------------------------
domega = np.amin(np.diff(ap.allomegas))
dsintheta = np.amin(abs(np.diff(sintheta)))
dk = dsintheta * wavenumbers[0]
# target image grid
grid_y, grid_x = np.mgrid[ap.allomegas[0] : ap.allomegas[-1] : domega, np.amin(sintheta) * wavenumbers[-1] : np.amax(sintheta) * wavenumbers[-1] : dk]
imextent = (np.amin(sintheta) * wavenumbers[-1] / 1e6, np.amax(sintheta) * wavenumbers[-1] / 1e6, ap.allomegas[0] / eh, ap.allomegas[-1] / eh)
# source coordinates for griddata
ktheta = sintheta[None, :] * wavenumbers[:, None]
omegapoints = np.broadcast_to(ap.allomegas[:, None], ktheta.shape)
points = np.stack( (ktheta.flatten(), omegapoints.flatten()), axis = -1)
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = np.amax(σ_ext_arr)
ax = fig.add_subplot(311)
grid_z = griddata(points, σ_ext_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
grid_z = griddata(points, σ_scat_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
grid_z = griddata(points, σ_abs_arr.flatten(), (grid_x, grid_y), method = ipm)
im = ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
for omega in ap.omega_singles:
i = np.searchsorted(ap.allomegas, omega)
fig = plt.figure()
fig.suptitle("%g eV" % (omega / eh))
ax = fig.add_subplot(111)
sintheta = np.sin(a.theta)
ax.plot(sintheta, σ_ext_arr[i]*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sintheta, σ_scat_arr[i]*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sintheta, σ_abs_arr[i]*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\theta$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
pdf.savefig(fig)
plt.close(fig)
annotate_pdf_metadata(pdf)
exit(0)

View File

@ -1,166 +0,0 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, sfloat, annotate_pdf_metadata
ap = ArgParser(['const_real_background', 'lattice2d', 'multi_particle']) # TODO general analytical background
ap.add_argument("-k", nargs=2, type=sfloat, required=True, help='k vector', metavar=('K_X', 'K_Y'))
ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("--rank-tol", type=float, required=False)
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11)
ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance')
ap.add_argument("-T", "--residual-tolerance", type=float, default=2.)
ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size")
#TODO alternative specification of the contour by center and half-axes
dospec = ap.add_argument_group("Eigenvalue search area by diffracted order specification", "Specification of eigenvalue search area by diffracted order number (requires constant real refractive index for background): the integration contour 'touches' the empty lattice band specified by -b, and its axis lying on the real axis reaches '-f'-way to the next diffractive order")
dospec.add_argument("-d", "--band-index", type=int, help="Argument's absolute value determines the empty lattice band order (counted from 1), -/+ determines whether the eigenvalues are searched below/above that empty lattice band.", required=True)
dospec.add_argument("-f", "--interval-factor", type=float, default=0.1, help="Relative length of the integration ellipse axis w.r.t. the interval between two empty lattice bands; this should be be less than 1.") #TODO check
dospec.add_argument("-i", "--imaginary-aspect-ratio", type=float, default=1., help="Aspect ratio of the integration ellipse (Im/Re); this should not exceed 1/interval_factor.")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
a = ap.parse_args()
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
particlestr = "modes" # TODO particle string specifier or some hash, do this in argproc.py
defaultprefix = "%s_basis%gnm_%gnm__%gnm_%gnm_n%g_b%+d_k(%g_%g)um-1_cn%d" % (
particlestr, a1[0]*1e9, a1[1]*1e9, a2[0]*1e9, a2[1]*1e9, a.refractive_index, a.band_index, a.k[0]*1e-6, a.k[1]*1e-6, a.N)
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
import numpy as np
import qpms
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix
from qpms.qpms_c import Particle, ScatteringSystem, empty_lattice_modes_xy
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.constants import eV, hbar
eh = eV/hbar
def inside_ellipse(point_xy, centre_xy, halfaxes_xy):
x = point_xy[0] - centre_xy[0]
y = point_xy[1] - centre_xy[1]
ax = halfaxes_xy[0]
ay = halfaxes_xy[1]
return ((x/ax)**2 + (y/ay)**2) <= 1
beta = np.array(a.k)
if True: # TODO alternative specification of the contour by center and half-axes
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, np.array([0,0]), 1)
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, beta, (1+abs(a.band_index)) * empty_freqs[1])
# make the frequencies in the list unique
empty_freqs = list(empty_freqs)
i = 0
while i < len(empty_freqs) - 1:
if math.isclose(empty_freqs[i], empty_freqs[i+1], rel_tol=1e-13):
del empty_freqs[i+1]
else:
i += 1
logging.info("Empty freqs: %s", str(empty_freqs))
logging.info("Empty freqs (eV): %s", str([ff / eh for ff in empty_freqs]))
if a.band_index > 0:
top = empty_freqs[a.band_index]
bottom = empty_freqs[a.band_index - 1]
lebeta_om = bottom
else: # a.band_index < 0
top = empty_freqs[abs(a.band_index) - 1]
bottom = empty_freqs[abs(a.band_index) - 2] if abs(a.band_index) > 1 else 0.
lebeta_om = top
#print(top,bottom,lebeta_om)
freqradius = .5 * (top - bottom) * a.interval_factor
centfreq = bottom + freqradius if a.band_index > 0 else top - freqradius
if freqradius == 0:
raise ValueError("Integration contour radius is set to zero. Are you trying to look below the lowest empty lattice band at the gamma point?")
freqradius *= (1-1e-13) # to not totally touch the singularities
logging.info("Direct lattice basis: %s" % str(ap.direct_basis))
logging.info("Reciprocal lattice basis: %s" % str(ap.reciprocal_basis2pi))
ss, ssw = ScatteringSystem.create(ap.get_particles(), ap.background_emg, centfreq, latticebasis=ap.direct_basis)
logging.info("Finding eigenvalues around %s (= %s eV)" % (str(centfreq), str(centfreq/eh)))
logging.info("Real half-axis %s (= %s eV)" % (str(freqradius), str(freqradius/eh)))
logging.info("Imaginary half-axis %s (= %s eV)" % (str(freqradius*a.imaginary_aspect_ratio), str(freqradius*a.imaginary_aspect_ratio/eh)))
with qpms.pgsl_ignore_error(15):
res = ss.find_modes(centfreq, freqradius, freqradius * a.imaginary_aspect_ratio,
blochvector = a.k, contour_points = a.N, rank_tol = a.rank_tolerance,
res_tol = a.residual_tolerance, rank_min_sel = a.min_candidates)
logging.info("Eigenfrequencies found: %s" % str(res['eigval']))
logging.info("Eigenfrequencies found (eV): %s" % str(res['eigval'] / eh))
res['inside_contour'] = inside_ellipse((res['eigval'].real, res['eigval'].imag),
(centfreq.real, centfreq.imag), (freqradius, freqradius * a.imaginary_aspect_ratio))
#res['refractive_index_internal'] = [emg(om).n for om in res['eigval']]
#del res['omega'] If contour points are not needed...
#del res['ImTW'] # not if dbg=false anyway
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, empty_freqs=np.array(empty_freqs),
ss_positions=ss.positions, ss_fullvec_poffsets=ss.fullvec_poffsets,
ss_fullvec_psizes=ss.fullvec_psizes,
ss_bspecs_flat = np.concatenate(ss.bspecs),
ss_lattice_basis=ss.lattice_basis, ss_reciprocal_basis = ss.reciprocal_basis,
**res)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
if len(res['eigval']) == 0:
logging.info("No eigenvalues found; nothing to plot")
exit(1)
imcut = np.linspace(0, -freqradius)
recut1 = np.sqrt(lebeta_om**2+imcut**2) # incomplete Gamma-related cut
recut2 = np.sqrt((lebeta_om/2)**2-imcut**2) + lebeta_om/2 # odd-power-lilgamma-related cut
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
ax = fig.add_subplot(111,)
#ax.plot(res['omega'].real/eh, res['omega'].imag/eh*1e3, ':') #res['omega'] not implemented in ScatteringSystem
ax.add_artist(matplotlib.patches.Ellipse((centfreq.real/eh, centfreq.imag/eh*1e3),
2*freqradius/eh, 2*freqradius*a.imaginary_aspect_ratio/eh*1e3, fill=False,
ls=':'))
ax.scatter(x=res['eigval'].real/eh, y=res['eigval'].imag/eh*1e3 , c = res['inside_contour']
)
ax.plot(recut1/eh, imcut/eh*1e3)
ax.plot(recut2/eh, imcut/eh*1e3)
for i,om in enumerate(res['eigval']):
ax.annotate(str(i), (om.real/eh, om.imag/eh*1e3))
xmin = np.amin(res['eigval'].real)/eh
xmax = np.amax(res['eigval'].real)/eh
xspan = xmax-xmin
ymin = np.amin(res['eigval'].imag)/eh*1e3
ymax = np.amax(res['eigval'].imag)/eh*1e3
yspan = ymax-ymin
ax.set_xlim([xmin-.1*xspan, xmax+.1*xspan])
ax.set_ylim([ymin-.1*yspan, ymax+.1*yspan])
ax.set_xlabel('$\hbar \Re \omega / \mathrm{eV}$')
ax.set_ylabel('$\hbar \Im \omega / \mathrm{meV}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
pdf.savefig(fig)
annotate_pdf_metadata(pdf, scriptname='lat2d_modes.py')
exit(0)

View File

@ -1,129 +0,0 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, sfloat, annotate_pdf_metadata
ap = ArgParser(['background', 'lattice2d', 'multi_particle', 'omega_seq'])
ap.add_argument("-k", nargs=2, type=sfloat, required=True, help='k vector', metavar=('K_X', 'K_Y'))
ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("-g", "--little-group", type=str, default="trivial_g", help="Little group for subspace irrep classification", action="store")
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-s", "--singular_values", type=int, default=10, help="Number of singular values to plot")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
#Important! The particles are supposed to be of D2h/D4h symmetry
# thegroup = 'D4h' if px == py and not a.D2 else 'D2h'
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
particlestr = "svdinterval" # TODO particle string specifier or some hash, do this in argproc.py
defaultprefix = "%s_basis%gnm_%gnm__%gnm_%gnm_f(%g..%g..%g)eV_k%g_%g" % (
particlestr, a1[0]*1e9, a1[1]*1e9, a2[0]*1e9, a2[1]*1e9, *(a.eV_seq), ap.k[0], ap.k[1])
logging.info("Default file prefix: %s" % defaultprefix)
import numpy as np
import qpms
import warnings
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle, pgsl_ignore_error, empty_lattice_modes_xy
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
from qpms.symmetries import point_group_info
eh = eV/hbar
# not used; TODO:
irrep_labels = {"B2''":"$B_2''$",
"B2'":"$B_2'$",
"A1''":"$A_1''$",
"A1'":"$A_1'$",
"A2''":"$A_2''$",
"B1''":"$B_1''$",
"A2'":"$A_2'$",
"B1'":"$B_1'$",
"E'":"$E'$",
"E''":"$E''$",}
dbgmsg_enable(DebugFlags.INTEGRATION)
omegas = ap.omegas
logging.info("%d frequencies from %g to %g eV" % (len(omegas), omegas[0]/eh, omegas[-1]/eh))
particles = ap.get_particles()
ss, ssw = ScatteringSystem.create(particles, ap.background_emg, omegas[0], latticebasis=ap.direct_basis)
k = np.array([ap.k[0], ap.k[1], 0])
# Auxillary finite scattering system for irrep decomposition, quite a hack
ss1, ssw1 = ScatteringSystem.create(particles, ap.background_emg, omegas[0],sym=FinitePointGroup(point_group_info[ap.little_group]))
wavenumbers = np.empty(omegas.shape)
SVs = [None] * ss1.nirreps
for iri in range(ss1.nirreps):
SVs[iri] = np.empty(omegas.shape+(ss1.saecv_sizes[iri],))
for i, omega in enumerate(omegas):
ssw = ss(omega)
wavenumbers[i] = ssw.wavenumber.real
if ssw.wavenumber.imag:
warnings.warn("Non-zero imaginary wavenumber encountered")
with pgsl_ignore_error(15): # avoid gsl crashing on underflow; maybe not needed
ImTW = ssw.modeproblem_matrix_full(k)
for iri in range(ss1.nirreps):
ImTW_packed = ss1.pack_matrix(ImTW, iri)
SVs[iri][i] = np.linalg.svd(ImTW_packed, compute_uv = False)
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, omegas=omegas, wavenumbers=wavenumbers, SVs=np.concatenate(SVs, axis=-1), irrep_names=ss1.irrep_names, irrep_sizes=ss1.saecv_sizes, unitcell_area=ss.unitcell_volume
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
ax = fig.add_subplot(111)
cc = plt.rcParams['axes.prop_cycle']()
for iri in range(ss1.nirreps):
cargs = next(cc)
nlines = min(a.singular_values, ss1.saecv_sizes[iri])
for i in range(nlines):
ax.plot(omegas/eh, SVs[iri][:,-1-i],
label= None if i else irrep_labels.get(ss1.irrep_names[iri], ss1.irrep_names[iri]),
**cargs)
ax.set_ylim([0,1.1])
if hasattr(ap, "background_epsmu"):
xlim = ax.get_xlim()
omegas_empty = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, k, omegas[-1])
for om in omegas_empty:
if om/eh > xlim[0] and om/eh < xlim[1]:
ax.axvline(om/eh, ls=':')
ax.set_xlabel('$\hbar \omega / \mathrm{eV}$')
ax.set_ylabel('Singular values')
ax.legend()
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
pdf.savefig(fig)
annotate_pdf_metadata(pdf, scriptname='lat2d_realfreqsvd.py')
exit(0)

11
misc/processWfiles.py Executable file
View File

@ -0,0 +1,11 @@
#!/usr/bin/env python3
import sys
from qpms import processWfiles_sameKs
npart = int(sys.argv[1])
dest = sys.argv[2]
srcs = sys.argv[3:]
processWfiles_sameKs(srcs, dest, f='d', nparticles=npart)

10
misc/processWfiles2part.py Executable file
View File

@ -0,0 +1,10 @@
#!/usr/bin/env python3
import sys
from qpms import processWfiles_sameKs
dest = sys.argv[1]
srcs = sys.argv[2:]
processWfiles_sameKs(srcs, dest, f='d')

13
misc/processWfiles_sortnames.py Executable file
View File

@ -0,0 +1,13 @@
#!/usr/bin/env python3
import sys
from qpms import processWfiles_sameKs
npart = int(sys.argv[1])
dest = sys.argv[2]
srcs = sys.argv[3:]
srcs_sorted = sorted(srcs, key=float)
processWfiles_sameKs(srcs_sorted, dest, f='d', nparticles=npart)

View File

@ -1,167 +0,0 @@
#!/usr/bin/env python3
import math
from qpms.argproc import ArgParser, annotate_pdf_metadata
ap = ArgParser(['rectlattice2d', 'const_real_background', 'single_particle', 'single_lMax']) # const_real_background needed for calculation of the diffracted orders
ap.add_argument("-k", nargs=2, type=float, required=True, help='k vector', metavar=('K_X', 'K_Y'))
ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
ap.add_argument("--rank-tol", type=float, required=False)
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11)
ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance')
ap.add_argument("-T", "--residual-tolerance", type=float, default=2.)
ap.add_argument("-b", "--band-index", type=int, required=True, help="Argument's absolute value determines the empty lattice band order (counted from 1), -/+ determines whether the eigenvalues are searched below/above that empty lattice band.")
ap.add_argument("-f", "--interval-factor", type=float, default=0.1)
ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size")
ap.add_argument("-i", "--imaginary-aspect-ratio", type=float, default=1, help="Aspect ratio of the integration contour (Im/Re)")
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
a=ap.parse_args()
px, py = a.period
if a.kpi:
a.k[0] *= math.pi/px
a.k[1] *= math.pi/py
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_m%s_n%g_b%+d_k(%g_%g)um-1_L%d_cn%d" % (
particlestr, px*1e9, py*1e9, str(a.material), a.refractive_index, a.band_index, a.k[0]*1e-6, a.k[1]*1e-6, a.lMax, a.N)
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
import numpy as np
import qpms
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix
from qpms.qpms_c import Particle, ScatteringSystem, empty_lattice_modes_xy
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.constants import eV, hbar
eh = eV/hbar
def inside_ellipse(point_xy, centre_xy, halfaxes_xy):
x = point_xy[0] - centre_xy[0]
y = point_xy[1] - centre_xy[1]
ax = halfaxes_xy[0]
ay = halfaxes_xy[1]
return ((x/ax)**2 + (y/ay)**2) <= 1
a1 = ap.direct_basis[0]
a2 = ap.direct_basis[1]
#Particle positions
orig_x = [0]
orig_y = [0]
orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)
if a.material in lorentz_drude:
emg = EpsMuGenerator(lorentz_drude[a.material])
else: # constant refractive index
emg = EpsMuGenerator(EpsMu(a.material**2))
beta = np.array(a.k)
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, np.array([0,0]), 1)
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, beta, (1+abs(a.band_index)) * empty_freqs[1])
# make the frequencies in the list unique
empty_freqs = list(empty_freqs)
i = 0
while i < len(empty_freqs) - 1:
if math.isclose(empty_freqs[i], empty_freqs[i+1], rel_tol=1e-13):
del empty_freqs[i+1]
else:
i += 1
logging.info("Empty freqs: %s", str(empty_freqs))
if a.band_index > 0:
top = empty_freqs[a.band_index]
bottom = empty_freqs[a.band_index - 1]
lebeta_om = bottom
else: # a.band_index < 0
top = empty_freqs[abs(a.band_index) - 1]
bottom = empty_freqs[abs(a.band_index) - 2] if abs(a.band_index) > 1 else 0.
lebeta_om = top
#print(top,bottom,lebeta_om)
freqradius = .5 * (top - bottom) * a.interval_factor
centfreq = bottom + freqradius if a.band_index > 0 else top - freqradius
bspec = BaseSpec(lMax = a.lMax)
pp = Particle(orig_xy[0][0], t = ap.tmgen, bspec=bspec)
ss, ssw = ScatteringSystem.create([pp], ap.background_emg, centfreq, latticebasis = ap.direct_basis)
if freqradius == 0:
raise ValueError("Integration contour radius is set to zero. Are you trying to look below the lowest empty lattice band at the gamma point?")
freqradius *= (1-1e-13) # to not totally touch the singularities
with qpms.pgsl_ignore_error(15):
res = ss.find_modes(centfreq, freqradius, freqradius * a.imaginary_aspect_ratio,
blochvector = a.k, contour_points = a.N, rank_tol = a.rank_tolerance,
res_tol = a.residual_tolerance, rank_min_sel = a.min_candidates)
logging.info("Eigenfrequencies found: %s" % str(res['eigval']))
res['inside_contour'] = inside_ellipse((res['eigval'].real, res['eigval'].imag),
(centfreq.real, centfreq.imag), (freqradius, freqradius * a.imaginary_aspect_ratio))
res['refractive_index_internal'] = [emg(om).n for om in res['eigval']]
#del res['omega'] If contour points are not needed...
#del res['ImTW'] # not if dbg=false anyway
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta={**vars(a), 'qpms_version' : qpms.__version__()}, empty_freqs=np.array(empty_freqs),
ss_positions=ss.positions, ss_fullvec_poffsets=ss.fullvec_poffsets,
ss_fullvec_psizes=ss.fullvec_psizes,
ss_bspecs_flat = np.concatenate(ss.bspecs),
ss_lattice_basis=ss.lattice_basis, ss_reciprocal_basis = ss.reciprocal_basis,
**res)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
imcut = np.linspace(0, -freqradius)
recut1 = np.sqrt(lebeta_om**2+imcut**2) # incomplete Gamma-related cut
recut2 = np.sqrt((lebeta_om/2)**2-imcut**2) + lebeta_om/2 # odd-power-lilgamma-related cut
import matplotlib
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
fig = plt.figure()
ax = fig.add_subplot(111,)
#ax.plot(res['omega'].real/eh, res['omega'].imag/eh*1e3, ':') #res['omega'] not implemented in ScatteringSystem
ax.add_artist(matplotlib.patches.Ellipse((centfreq.real/eh, centfreq.imag/eh*1e3),
2*freqradius/eh, 2*freqradius*a.imaginary_aspect_ratio/eh*1e3, fill=False,
ls=':'))
ax.scatter(x=res['eigval'].real/eh, y=res['eigval'].imag/eh*1e3 , c = res['inside_contour']
)
ax.plot(recut1/eh, imcut/eh*1e3)
ax.plot(recut2/eh, imcut/eh*1e3)
for i,om in enumerate(res['eigval']):
ax.annotate(str(i), (om.real/eh, om.imag/eh*1e3))
xmin = np.amin(res['eigval'].real)/eh
xmax = np.amax(res['eigval'].real)/eh
xspan = xmax-xmin
ymin = np.amin(res['eigval'].imag)/eh*1e3
ymax = np.amax(res['eigval'].imag)/eh*1e3
yspan = ymax-ymin
ax.set_xlim([xmin-.1*xspan, xmax+.1*xspan])
ax.set_ylim([ymin-.1*yspan, ymax+.1*yspan])
ax.set_xlabel('$\hbar \Re \omega / \mathrm{eV}$')
ax.set_ylabel('$\hbar \Im \omega / \mathrm{meV}$')
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
pdf.savefig(fig)
annotate_pdf_metadata(pdf, scriptname="rectlat_simple_modes.py")
exit(0)

31
misc/riinfo2c.py Normal file
View File

@ -0,0 +1,31 @@
'''INCOMPLETE! This will read read the refractiveindex.info yaml files
and transforms the database into a C source.'''
import re
import os
try:
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
# Right now, we can process only the 'tabulated nk' data
searchfor = '- type: tabulated nk'
searchfor = re.compile(searchfor)
ridatadir = "/u/46/necadam1/unix/repo/refractiveindex.info-database/database/data"
nktables = dict()
def find_files_by_pattern (pattern, dir):
r = re.compile(pattern)
for parent, dnames, fnames in os.walk(ridatadir):
for fname in fnames:
filename = os.path.join(parent, fname)
if os.path.isfile(filename):
with open(filename) as f:
text = f.read()
if r.search(text):
yield (

85
misc/subroutines-mstm Normal file
View File

@ -0,0 +1,85 @@
ricbessel # ricatti-bessel psi
richankes # ricatti-hankel xi
cricbessel
crichankel # (same with complex argument)
cspherebessel # spherical Bessel jn(z), yn(z)
vcfunc # vector coupling coefficients C(m,n|k,l|m+k,w), w = |n-l|,...n+l
normalizedlegendre # normalized asssociated legendre functions
rotcoef # Generalized spherical functions
taufunc # vector spherical harmonics, normalized
pifunc # vector spherical harmonics, ?
planewavecoef # regular vswf expansion coefficients for a plane wave
gaussianbeamcoef # regular vsfw expansion for a gaussian beam
sphereplanewavecoef # plane wave expansion coefficients at sphere origins
axialtrancoefrecurrence # axial translation ceifficients
axialtrancoefinit
tranordertest # test to determine convergence of regular vswf addition theorem
atcadd
atcdim
moffset
gentrancoef # calculates the vwh translation coefficients for a general translation from one origin to another
cartosphere # cartesian to spherical coorsinates
eulerrotation # euler rotation of a point specified in cartesian coords
ephicoef
planewavetruncationorder # test to determine max order of vswf expansion of a plane wave at distance r
vwhcalc # calculates the cartesian components of the vswf at position rpos
vwhaxialcalc # svwf calculation for an axial translation
twobytwoinverse # inverse of a 2x2 matrix
transfer
mpisetup
module spheredata (lots of declarations!, read all the shit)
(...)
module miecoefdata
miecoefcalc # calculation of the max order of sphere expansions and storage of mie coefficients
readtmatrix # reads and stores a PARTICLE T matrix
lrmodetran # transformation between lr and te tm basis
mieoa # optically aptive lorenz/mie coefficients
getmiedataall # retrieve the array of mie data
getmiedataone # retrieve mie data for a single sphere
onemiecoeffmult # multiplies coefficients for sphere i by appropriate lm coefficient
multmiecoeffmult # generalized mie coefficient mult
dotproduct # vectorproduct for each rhs element of coefficient array
module translation
hostconfiguration # calculates lists for identifying host and interior sphere
rottranmtrxsetup # sets up the stored translation matrices and sets other constants
rottranmtrxclear # clear the stored translation matrices
sphereinteraction # the general sphere interaction driver
external_to_external_expansion # outgoing translation operator: a(i) = H(i-j) a(j)
external_to_internal_expansion #
m1_to_the_n # sign flipped for odd degrees
rottranfarfield # far field formula for outgoing vswf translation
farfieldtranslationerror # correction ter for hybrid bcgm solution
rottran # the vectorized rotation translation-rotation operation !!!!
spheregaussianbeamcoef # GB coefficients for sphere-centered expansion, obtained via translation
rotvec # rotation of expansion coefficients amn by euler angles
module scatprops
tranorders # determinaniot of maximum orders for target-based expansions
amncommonorigin # translation of sphere-based expansions to common target origin
lrsphereqeff # general efficiency factor calculation
qefficiencyfactors # calling routine for efficiency calculation
scatteringmatrix # scattering amplitude sa and matrix sm calculation
s11expansion
fosmcalc # azimuth-averaged scattering matrix
formexpansion # determine the generalized sf expansion for the azimuth-averaged scatt. matrix
ranorientscatmatrix
ranorientscatmatrixcalc
module nearfield
packcoefficient
unpackcoefficient
nearfieldspherepart # the field at point xg generated by the spheres
nearfieldincidentpart # the incident field at point xg using a regular vswh expansion
nearfieldincidentcoef # reshaped array of incident field coefficients
nearfieldpointcalc # !
nearfieldgridcalc
module solver
tmatrixsoln # calculation of T-mat. via solution of interaction eqs for a generalized plane wave expansion
fixedorsoln # solution of interaction exuations for a fixed orientation
cbicgff # hybrid bcgm, using far field translation
cbicg # bcgm iteration solver

11
misc/test_vswf.gnuplot Normal file
View File

@ -0,0 +1,11 @@
f = 'out'
fc = 'outcs'
do for [t=3:137] {
y = ((t-3) % 45)/3
typ = (t-3) % 3
n = floor(sqrt(y+1))
m = y - (n*(n+1)-1)
print 'n = ', n, ', m = ', m, ', typ ', typ
plot f using 1:t w linespoints, fc using 1:t w linespoints
pause -1
}

View File

@ -1,461 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Periodic Green's functions vs.
VSWF lattice sums
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\abs}[1]{\left|#1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uvec}[1]{\hat{\mathbf{#1}}}
\end_inset
\lang english
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1}^{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ushD}[2]{Y'_{#1}^{#2}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\vsh}{\vect A}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vshD}{\vect{A'}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkc}{\vect y}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcout}{\vect u}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcreg}{\vect v}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcreg}{a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcout}{f}
\end_inset
\end_layout
\begin_layout Section
Some definitions and useful relations
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathcal{H}_{l}^{m}\left(\vect d\right)\equiv h_{l}^{+}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
\]
\end_inset
\begin_inset Formula
\[
\mathcal{J}_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
\]
\end_inset
\end_layout
\begin_layout Standard
Dual spherical harmonics and waves
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\int\ush lm\ushD{l'}{m'}\,\ud\Omega=\delta_{l,l'}\delta_{m,m'}
\]
\end_inset
\begin_inset Formula
\[
\mathcal{J}'_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ushD lm\left(\uvec d\right)
\]
\end_inset
\end_layout
\begin_layout Standard
Expansion of plane wave (CHECKME whether this is really convention-independent,
but it seems so)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\kappa\vect r\right)\ush lm\left(\uvec r'\right)=4\pi\sum_{l,m}i^{n}\mathcal{J}{}_{l}^{m}\left(\kappa\vect r\right)\ushD lm\left(\uvec r'\right)
\]
\end_inset
This one should also be convention independent (similarly for
\begin_inset Formula $\mathcal{H}_{l}^{m}$
\end_inset
):
\begin_inset Formula
\[
\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right).
\]
\end_inset
\end_layout
\begin_layout Section
Helmholtz equation and Green's functions (in 3D)
\end_layout
\begin_layout Standard
Note that the notation does not follow Linton's (where the wavenumbers are
often implicit)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\left(\nabla^{2}+\kappa^{2}\right)G^{(\kappa)}\left(\vect x,\vect x_{0}\right)=\delta\left(\vect x-\vect x_{0}\right)
\]
\end_inset
\begin_inset Formula
\begin{align*}
G_{0}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{0}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{\cos\left(\kappa\left|\vect x-\vect x_{0}\right|\right)}{4\pi\left|\vect x-\vect x_{0}\right|}\\
G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{e^{\pm i\kappa\left|\vect x-\vect x_{0}\right|}}{4\pi\left|\vect x-\vect x_{0}\right|}=-\frac{i\kappa}{4\pi}h_{0}^{\pm}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)=-\frac{i\kappa}{\sqrt{4\pi}}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)
\end{align*}
\end_inset
\begin_inset Marginal
status open
\begin_layout Plain Layout
\begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$
\end_inset
in case wacky conventions.
\end_layout
\end_inset
Lattice GF [Linton (2.3)]:
\begin_inset Formula
\begin{equation}
G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF}
\end{equation}
\end_inset
\end_layout
\begin_layout Section
GF expansion and lattice sum definition
\end_layout
\begin_layout Standard
Let's define
\begin_inset Formula
\[
\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R},
\]
\end_inset
and also its dual version
\begin_inset Formula
\[
\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}.
\]
\end_inset
\end_layout
\begin_layout Standard
Inspired by [Linton (4.1)]; assuming that
\begin_inset Formula $\vect s\notin\Lambda$
\end_inset
, let's expand the lattice Green's function around
\begin_inset Formula $\vect s$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)
\]
\end_inset
and multiply with a dual SH + integrate
\begin_inset Formula
\begin{align}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\
& =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction}
\end{align}
\end_inset
The expansion coefficients
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
is then typically extracted by taking the limit
\begin_inset Formula $\left|\vect r\right|\to0$
\end_inset
.
\end_layout
\begin_layout Standard
The relation between
\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
and
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
can be obtained e.g.
from the addition theorem for scalar spherical wavefunctions [Linton (C.3)],
\begin_inset Formula
\[
\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|
\]
\end_inset
where for the zeroth degree and order one has [Linton (C.3)]
\begin_inset Formula
\[
S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)
\]
\end_inset
\begin_inset Marginal
status open
\begin_layout Plain Layout
In a totally convention-independent version probably looks like
\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$
\end_inset
, but the
\begin_inset Formula $Y_{0}^{0}$
\end_inset
will cancel with the expression for GF anyways, so no harm to the final
result.
\end_layout
\end_inset
From the lattice GF definition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Lattice GF"
plural "false"
caps "false"
noprefix "false"
\end_inset
\begin_inset Formula
\begin{align*}
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}
\end{align*}
\end_inset
and mutliplying with dual SH and integrating
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l'}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\
& =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)
\end{align*}
\end_inset
and comparing with
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction"
plural "false"
caps "false"
noprefix "false"
\end_inset
we have
\begin_inset Formula
\[
\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right).
\]
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO maybe also define some
\begin_inset Formula $\tau'_{l}^{m}$
\end_inset
as expansion coefficients of GF into dual regular SSWFs.
\end_layout
\end_inset
\end_layout
\end_body
\end_document

View File

@ -1,107 +0,0 @@
# Installing QPMS on Android/AOSP (-based) systems
Yes, it is possible. Basically all you need is a device capable of running [Termux](https://termux.com/) with enough memory to build everything.
The following instructions have been tested with Termux version 0.118.0 on
[e/OS/ R development build on a Samsung Galaxy S10e](https://doc.e.foundation/devices/beyond0lte/install)
([e-1.0-r-20220526188878-dev-beyond0lte](https://images.ecloud.global/dev/beyond0lte/)).
Presumably, they should work also on stock Android as well, but who
in their right mind would run all the spyware by Google & al.?
Physical keyboard or [remote access](https://wiki.termux.com/wiki/Remote_Access) is strongly recommended. :D
## Get Termux
Just [install the Termux app from F-Droid or Github as per instructions](https://github.com/termux/termux-app#f-droid).
Open Termux; the following steps of these instructions are basically
just commands you need to type in Termux.
## Install prerequisities from termux repositories
```
pkg install python3 cmake git clang build-essential binutils
```
## Build and install GSL
```
curl -O https://www.nic.funet.fi/pub/gnu/ftp.gnu.org/pub/gnu/gsl/gsl-latest.tar.gz
tar xf gsl-latest.tar.gz
cd gsl-2.7.1
./configure --prefix=$PREFIX
make # add -j4 or so to make it faster on multicore systems
make install
cd -
```
## Build and install OpenBLAS
```
git clone https://github.com/xianyi/OpenBLAS.git
cd OpenBLAS
make
make PREFIX=$PREFIX install
cd -
```
### Workaround for "broken" setup.py script
The goal is to fix `setup.py` so that it finds the correct libraries automatically, but in the meantime, you can use this workaround to get the Python part of QPMS installed:
```
ln -s $PREFIX/lib/libopenblas.so $PREFIX/LIB/liblapacke.so
```
## Build and install Numpy
(Successful build requires the `MATHLIB` environmental variable set, otherwise linking will fail; see https://wiki.termux.com/wiki/Python.)
```
MATHLIB=m pip3 install numpy
```
### Install Sympy
```
pip3 install sympy
```
## Build and install QPMS
```
git clone https://repo.or.cz/qpms.git
cd qpms
cmake -DCMAKE_INSTALL_PREFIX=$PREFIX . # ugly, TODO make a separate build tree!
make install
python3 setup.py install
```
Hopefully, QPMS has installed successfully. At this point, you should be able
to import and use QPMS with some exceptions. First, there is some legacy code
in the `qpms.qpms_p` module (which is no longer imported automatically with
bare `import qpms`). You shouldn't need this unless you are trying to run some
historic Jupyter notebooks or other old custom scripts. It contains a scipy
dependence, and scipy is hard to get working in Android environment (as
it requires a Fortran compiler to build).
## Install matplotlib
If you try to run just `pip3 install matplotlib` in Termux, it might likely
fail when installing the `pillow` dependency.
First, according to [Termux wiki](https://wiki.termux.com/wiki/Python#Python_module_installation_tips_and_tricks),
pillow depends on `libpng` and `libjpeg-turbo`, which are fortunately
available in Termux packages.
Second, pillow instalation requires an additional environment variable
`LDFLAGS="-L/system/lib64"` to be set on 64-bit devices.
Hence:
```
pkg install libpng libjpeg-turbo
export LDFLAGS="-L/system/lib64" # on 64-bit devices
pip3 install matplotlib
```
After this step, you should be able to run the command-line scripts
from `misc/` directory and examples from `examples/` directory.

View File

@ -1,266 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset Formula
\begin{equation}
\Delta_{n}(x,z)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\label{eq:Delta definition}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Integration per partes:
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\int t^{-\frac{1}{2}-n}\ud t=\frac{t^{\frac{1}{2}-n}}{\frac{1}{2}-n};
\]
\end_inset
\begin_inset Formula
\[
\frac{\ud}{\ud t}e^{-t+\frac{z^{2}}{4t}}=\left(-1-\frac{z^{2}}{4t^{2}}\right)e^{-t+\frac{z^{2}}{4t}}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
\left(\frac{1}{2}-n\right)\Delta_{n} & =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\int_{x}^{\infty}t^{\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t+\frac{z^{2}}{4}\int_{x}^{\infty}t^{\frac{-3}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\\
& =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\Delta_{n-1}+\frac{z^{2}}{4}\Delta_{n+1},
\end{align*}
\end_inset
\begin_inset Formula
\begin{equation}
\Delta_{n+1}=\frac{4}{z^{2}}\left(\left(\frac{1}{2}-n\right)\Delta_{n}-\Delta_{n-1}+x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}\right).\label{eq:Delta recurrence}
\end{equation}
\end_inset
There are obviously wrong signs in Kambe II, (A 3.3).
\end_layout
\begin_layout Standard
Eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Delta recurrence"
plural "false"
caps "false"
noprefix "false"
\end_inset
is obviously unsuitable for numerical computation when
\begin_inset Formula $z$
\end_inset
approaches 0.
However, the definition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Delta definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
suggests that the function should be analytical around
\begin_inset Formula $z=0$
\end_inset
.
If
\begin_inset Formula $z=0$
\end_inset
, one has (by definition of incomplete Г function)
\begin_inset Formula
\begin{equation}
\Delta_{n}(x,0)=\Gamma\left(\frac{1}{2}-n,x\right).\label{eq:Delta:z = 0}
\end{equation}
\end_inset
For convenience, label
\begin_inset Formula $w=z^{2}/4$
\end_inset
and
\begin_inset Formula
\[
\Delta'_{n}\left(x,w\right)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{w}{t}}\ud t.
\]
\end_inset
Differentiating by parameter
\begin_inset Formula $w$
\end_inset
(which should be fine as long as the integration contour does not go through
zero) gives
\begin_inset Formula
\[
\frac{\partial\Delta'_{n}\left(x,w\right)}{\partial w}=\Delta'_{n+1}\left(x,w\right),
\]
\end_inset
so by recurrence
\begin_inset Formula
\[
\frac{\partial^{k}}{\partial w^{k}}\Delta'_{n}\left(x,w\right)=\Delta'_{n+k}\left(x,w\right).
\]
\end_inset
Together with
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Delta:z = 0"
plural "false"
caps "false"
noprefix "false"
\end_inset
, this gives an expansion around
\begin_inset Formula $w=0$
\end_inset
:
\begin_inset Formula
\[
\Delta_{n}'\left(x,w\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{w^{k}}{k!},
\]
\end_inset
\begin_inset Formula
\[
\Delta_{n}\left(x,z\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{\left(z/2\right)^{2k}}{k!}.
\]
\end_inset
The big negative first arguments in incomplete
\begin_inset Formula $\Gamma$
\end_inset
functions should be good (at least I think so, CHECKME), as well as the
\begin_inset Formula $1/k!$
\end_inset
factor (of course).
I am not sure what the convergence radius is, but for
\begin_inset Formula $\left|z\right|<2$
\end_inset
there seems to be absolutely no problem in using this formula.
\end_layout
\end_body
\end_document

View File

@ -1,9 +1,7 @@
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass report
\begin_preamble
%\renewcommand*{\chapterheadstartvskip}{\vspace*{1cm}}
@ -15,18 +13,16 @@
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "TeX Gyre Pagella"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
@ -67,7 +63,6 @@
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
@ -80,10 +75,7 @@
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style swedish
\dynamic_quotes 0
\quotes_language swedish
\papercolumns 1
\papersides 1
\paperpagestyle default
@ -110,7 +102,7 @@
\end_layout
\begin_layout Title
Electromagnetic multiple scattering, spherical waves and conventions
Electromagnetic multiple scattering, spherical waves and ****
\end_layout
\begin_layout Author
@ -252,7 +244,7 @@ Pi and tau
Xu
\begin_inset CommandInset label
LatexCommand label
name "subsec:Xu pitau"
name "sub:Xu pitau"
\end_inset
@ -381,7 +373,7 @@ The limiting expressions are obtained simply by multiplying the expressions
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Xu pitau"
reference "sub:Xu pitau"
\end_inset
@ -470,7 +462,6 @@ Jackson
LatexCommand cite
after "(9.101)"
key "jackson_classical_1998"
literal "true"
\end_inset
@ -487,7 +478,6 @@ where
LatexCommand cite
after "(9.119)"
key "jackson_classical_1998"
literal "true"
\end_inset
@ -509,7 +499,6 @@ Normalisation
LatexCommand cite
after "(9.120)"
key "jackson_classical_1998"
literal "true"
\end_inset
@ -530,7 +519,6 @@ Local sum rule
LatexCommand cite
after "(9.153)"
key "jackson_classical_1998"
literal "true"
\end_inset
@ -805,7 +793,6 @@ As in
LatexCommand cite
after "eq. (36)"
key "xu_calculation_1996"
literal "true"
\end_inset
@ -829,7 +816,6 @@ where CS is
LatexCommand cite
after "eq. (81)"
key "xu_calculation_1996"
literal "true"
\end_inset
@ -840,7 +826,7 @@ literal "true"
Relation between Kristensson and Taylor
\begin_inset CommandInset label
LatexCommand label
name "subsec:Kristensson-v-Taylor"
name "sub:Kristensson-v-Taylor"
\end_inset
@ -975,7 +961,7 @@ In this section I summarize the formulae for power
Kristensson
\begin_inset CommandInset label
LatexCommand label
name "subsec:Radiated enenergy-Kristensson"
name "sub:Radiated enenergy-Kristensson"
\end_inset
@ -1036,7 +1022,7 @@ Here I derive the radiated power in Taylor's convention by applying the
relations from subsection
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Kristensson-v-Taylor"
reference "sub:Kristensson-v-Taylor"
\end_inset
@ -1044,7 +1030,7 @@ reference "subsec:Kristensson-v-Taylor"
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Radiated enenergy-Kristensson"
reference "sub:Radiated enenergy-Kristensson"
\end_inset
@ -1124,7 +1110,6 @@ Jackson
LatexCommand cite
after "(9.155)"
key "jackson_classical_1998"
literal "true"
\end_inset
@ -1153,7 +1138,6 @@ TODO start from
LatexCommand cite
after "(A7)"
key "pustovit_plasmon-mediated_2010"
literal "true"
\end_inset
@ -1333,7 +1317,6 @@ TODO start from
LatexCommand cite
after "(A11)"
key "pustovit_plasmon-mediated_2010"
literal "true"
\end_inset
@ -1496,7 +1479,6 @@ Cruzan's formulation, Xu's normalisation
LatexCommand cite
after "(59)"
key "xu_efficient_1998"
literal "true"
\end_inset
@ -1513,7 +1495,6 @@ where
LatexCommand cite
after "(28,5,60,61)"
key "xu_efficient_1998"
literal "true"
\end_inset

View File

@ -1,677 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize 10
\spacing single
\use_hyperref false
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
1D and 2D in 3D Ewald sum
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\abs}[1]{\left|#1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uvec}[1]{\hat{\mathbf{#1}}}
\end_inset
\lang english
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1}^{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ushD}[2]{Y'_{#1}^{#2}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\vsh}{\vect A}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vshD}{\vect{A'}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkc}{\vect y}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcout}{\vect u}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcreg}{\vect v}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcreg}{a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcout}{f}
\end_inset
\end_layout
\begin_layout Section
General formula
\end_layout
\begin_layout Standard
We need to find the long-range part of the expansion coefficient
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
We take [Linton, (2.24)] with slightly modified notation
\begin_inset Formula $\left(\vect k_{\vect K}\equiv\vect K+\vect k\right)$
\end_inset
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t
\]
\end_inset
or, evaluated at point
\begin_inset Formula $\vect s+\vect r$
\end_inset
instead
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{1-d_{c}}\ud t
\]
\end_inset
The integral can be by substitutions taken into the form
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta
\]
\end_inset
Try substitution
\begin_inset Formula $t=\zeta^{2}$
\end_inset
: then
\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$
\end_inset
(
\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$
\end_inset
) and
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t
\]
\end_inset
Try subst.
\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$
\end_inset
\end_layout
\begin_layout Plain Layout
\lang english
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau
\]
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Foot
status open
\begin_layout Plain Layout
[Linton, (2.25)] with slightly modified notation:
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect{\vect k_{\vect K}}}}{2}\right)^{2j-1}\Gamma_{j\vect k_{\vect K}}
\]
\end_inset
We want to express an expansion in a shifted point, so let's substitute
\begin_inset Formula $\vect r\to\vect s+\vect r$
\end_inset
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j-1}\Gamma_{j\vect k_{\vect K}}
\]
\end_inset
\end_layout
\end_inset
Let's do the integration to get
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau
\]
\end_inset
The
\begin_inset Formula $\vect r$
\end_inset
-dependent plane wave factor can be also written as
\begin_inset Formula
\begin{align*}
e^{i\vect k_{\vect K}\cdot\vect r} & =e^{i\left|\vect k_{\vect K}\right|\vect r\cdot\uvec{\vect k_{\vect K}}}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect k_{\vect K}\right|\vect r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\\
& =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)
\end{align*}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
or the other way around
\begin_inset Formula
\[
e^{i\vect k_{\vect K}\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec{\vect k_{\vect K}}\right)
\]
\end_inset
\end_layout
\end_inset
so
\begin_inset Formula
\begin{multline*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\times\\
\times\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\int_{\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}}\ud\tau
\end{multline*}
\end_inset
\end_layout
\begin_layout Standard
We also have
\begin_inset Formula
\begin{align*}
e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\
& =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{j=0}^{\infty}\frac{1}{j!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{j},
\end{align*}
\end_inset
hence
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\
& \quad\times\sum_{j=0}^{\infty}\frac{1}{j!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect{\vect k_{\vect K}}}^{2}}{4}\right)^{j}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-\frac{d_{c}}{2}-j}\ud\tau}_{\Delta_{j}^{\left(d_{\Lambda}\right)}}\\
& =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\Delta_{j}^{\left(d_{\Lambda}\right)}}{j!}\times\\
& \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}}{4}\right)^{j}\\
& =-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\times\\
& \quad\times\left(\frac{\kappa\gamma_{\vect{\vect k_{\vect K}}}}{2}\right)^{2j}\sum_{k=0}^{j}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(j-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k}.
\end{align*}
\end_inset
If we label
\begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$
\end_inset
, we have
\begin_inset Formula
\begin{multline*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\
\times\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{k=0}^{j}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2j-k}\left(\cos\varphi\right)^{k}
\end{multline*}
\end_inset
and if we label
\begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$
\end_inset
\begin_inset Formula
\begin{multline*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi^{d_{c}/2}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect k_{\vect K}}\right)\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\times\\
\times\sum_{k=0}^{j}\left|\vect r\right|^{2j-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2j-k}\left(\cos\varphi\right)^{k}.
\end{multline*}
\end_inset
Now let's put the RHS into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
and try eliminating some sum by taking the limit
\begin_inset Formula $\left|\vect r\right|\to0$
\end_inset
.
We have
\begin_inset Formula $j_{l}\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)\sim\left(\left|\vect k_{\vect K}\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$
\end_inset
; the denominator from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
behaves like
\begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$
\end_inset
The leading terms are hence those with
\begin_inset Formula $\left|\vect r\right|^{l-l'+2j-k}$
\end_inset
.
So
\begin_inset Formula
\begin{multline*}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\times\\
\times\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{k=0}^{j}\delta_{l'-l,2j-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}.
\end{multline*}
\end_inset
Let's now focus on rearranging the sums; we have
\begin_inset Formula
\[
S(l')\equiv\sum_{l=0}^{\infty}\sum_{j=0}^{\infty}\sum_{k=0}^{j}\delta_{l'-l,2j-k}f(l',l,j,k)=\sum_{l=0}^{\infty}\sum_{j=0}^{\infty}\sum_{k=0}^{j}\delta_{l'-l,2j-k}f(l',l,j,2j-l'+l)
\]
\end_inset
We have
\begin_inset Formula $0\le k\le j$
\end_inset
, hence
\begin_inset Formula $0\le2j-l'+l\le j$
\end_inset
, hence
\begin_inset Formula $-2j\le-l'+l\le-j$
\end_inset
, hence also
\begin_inset Formula $l'-2j\le l\le l'-j$
\end_inset
, which gives the opportunity to swap the
\begin_inset Formula $l,j$
\end_inset
sums and the
\begin_inset Formula $l$
\end_inset
-sum becomes finite; so also consuming
\begin_inset Formula $\sum_{k=0}^{j}\delta_{l'-l,2j-k}$
\end_inset
we get
\begin_inset Formula
\[
S(l')=\sum_{j=0}^{\infty}\sum_{l=\max(0,l'-2j)}^{l'-j}f(l',l,j,2j-l'+l).
\]
\end_inset
Finally, we see that the interval of valid
\begin_inset Formula $l$
\end_inset
becomes empty when
\begin_inset Formula $l'-j<0$
\end_inset
, i.e.
\begin_inset Formula $j>l'$
\end_inset
; so we get a finite sum
\begin_inset Formula
\[
S(l')=\sum_{j=0}^{l'}\sum_{l=\max(0,l'-2j)}^{l'-j}f(l',l,j,2j-l'+l).
\]
\end_inset
Applying rearrangement,
\begin_inset Formula
\begin{multline*}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\times\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\\
\times\sum_{m=-l}^{l}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2j-l'+l},
\end{multline*}
\end_inset
or replacing the angles with their original definition,
\begin_inset Formula
\begin{multline*}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j}\times\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\\
\times\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l},
\end{multline*}
\end_inset
and if we want a
\begin_inset Formula $\sigma_{l'}^{m'}\left(\vect s,\vect k\right)$
\end_inset
instead, we reverse the sign of
\begin_inset Formula $\vect s$
\end_inset
and replace all spherical harmonics with their dual counterparts:
\begin_inset Formula
\begin{multline*}
\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\times\\
\times\sum_{m=-l}^{l}\ushD lm\left(\uvec{\vect k_{\vect K}}\right)\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ush lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l},
\end{multline*}
\end_inset
and remembering that in the plane wave expansion the
\begin_inset Quotes eld
\end_inset
duality
\begin_inset Quotes erd
\end_inset
is interchangeable,
\begin_inset Formula
\begin{multline*}
\sigma_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi^{d_{c}/2}\mathcal{A}\kappa}\frac{\left(2l'+1\right)!!}{\kappa^{l'}}\sum_{\vect K\in\Lambda^{*}}e^{-i\vect k_{\vect K}\cdot\vect s}\sum_{j=0}^{l'}\frac{\left(-1\right)^{j}}{j!}\Delta_{j}^{\left(d_{\Lambda}\right)}\left(\frac{\kappa\gamma_{\vect k_{\vect K}}}{2}\right)^{2j}\sum_{l=\max\left(0,l'-2j\right)}^{l'-j}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2j-l'+l}\frac{\left|\vect k_{\vect K}\right|^{l}}{\left(2l+1\right)!!}\times\\
\times\sum_{m=-l}^{l}\ush lm\left(\uvec{\vect k_{\vect K}}\right)\underbrace{\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{l'-l}\left(\frac{-\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|}\right)^{2j-l'+l}}_{\equiv A_{l',l,m',m,j}^{\left(d_{\Lambda}\right)}}.
\end{multline*}
\end_inset
The angular integral is easier to evaluate when
\begin_inset Formula $d_{\Lambda}=2$
\end_inset
, because then
\begin_inset Formula $\vect r_{\bot}$
\end_inset
is parallel (or antiparallel) to
\begin_inset Formula $\vect s_{\bot}$
\end_inset
, which gives
\begin_inset Formula
\[
A_{l',l,m',m,j}^{\left(2\right)}=\left(-\frac{\vect r_{\bot}\cdot\vect s_{\bot}}{\left|\vect r_{\bot}\cdot\vect s_{\bot}\right|}\right)^{2j-l'+l}\int\ud\Omega_{\vect r}\,\ush{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\frac{\left|\vect r_{\bot}\right|}{\left|\vect r\right|}\right)^{2j}
\]
\end_inset
and if we set the normal of the lattice correspond to the
\begin_inset Formula $z$
\end_inset
axis, the azimuthal part of the integral will become zero unless
\begin_inset Formula $m'=m$
\end_inset
for any meaningful spherical harmonics convention, and the polar part for
the only nonzero case has a closed-form expression, see e.g.
[Linton (A.15)], so one arrives at an expression similar to [Kambe II, (3.15)]
\lang english
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{2}\mathcal{A}}\pi^{3/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}e^{i\vect k_{\vect K}\cdot\vect s}\ush lm\left(\vect k_{\vect K}\right)\sum_{j=0}^{l-\left|m\right|}\left(-1\right)^{j}\gamma_{\vect k_{\vect K}}^{2}{}^{2j+1}\times\\
\times\Delta_{j}\left(\frac{\kappa^{2}\gamma_{\vect k_{\vect K}}^{2}}{4\eta^{2}},-i\kappa\gamma_{\vect k_{\vect K}}^{2}s_{\perp}\right)\times\\
\times\sum_{\substack{s\\
j\le s\le\min\left(2j,l-\left|m\right|\right)\\
l-j+\left|m\right|\,\mathrm{evej}
}
}\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k_{\vect K}\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D-1}
\end{multline}
\end_inset
where
\begin_inset Formula $s_{\perp}\equiv\vect s\cdot\uvec z=\vect s_{\bot}\cdot\uvec z$
\end_inset
.
If
\begin_inset Formula $d_{\Lambda}=1$
\end_inset
, the angular becomes more complicated to evaluate due to the different
behaviour of the
\begin_inset Formula $\vect r_{\bot}\cdot\vect s_{\bot}/\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|$
\end_inset
factor.
The choice of coordinates can make most of the terms dissapear: if the
lattice is set parallel to the
\begin_inset Formula $z$
\end_inset
axis,
\begin_inset Formula $A_{l',l,m',m,j}^{\left(1\right)}$
\end_inset
is zero unless
\begin_inset Formula $m=0$
\end_inset
, but one still has
\begin_inset Formula
\[
A_{l',l,m',0,j}^{\left(1\right)}=\pi\delta_{m',l'-l-2j}\lambda'_{l0}\lambda_{l'm'}\int_{-1}^{1}\ud x\,P_{l'}^{m'}\left(x\right)P_{l}^{0}\left(x\right)\left(1-x^{2}\right)^{\frac{l'-l}{2}}
\]
\end_inset
where
\begin_inset Formula $\lambda_{lm}$
\end_inset
are constants depending on the conventions for spherical harmonics.
This does not seem to have such a nice closed-form expression as in the
2D case, but it can be evaluated e.g.
using the common recurrence relations for associated Legendre polynomials.
Of course when
\begin_inset Formula $\vect s=0$
\end_inset
, one gets relatively nice closed expressions, such as those in [Linton].
\end_layout
\end_body
\end_document

View File

@ -1,976 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
1D in 3D Ewald sum
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\abs}[1]{\left|#1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uvec}[1]{\hat{\mathbf{#1}}}
\end_inset
\lang english
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1}^{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ushD}[2]{Y'_{#1}^{#2}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\vsh}{\vect A}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vshD}{\vect{A'}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkc}{\vect y}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcout}{\vect u}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wfkcreg}{\vect v}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcreg}{a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wckcout}{f}
\end_inset
\end_layout
\begin_layout Section
General formula
\end_layout
\begin_layout Standard
We need to find the expansion coefficient
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{i}{\kappa j_{l'}\left(\kappa\left|\vect r\right|\right)}\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right).\label{eq:tau extraction formula}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
[Linton, (2.24)] with slightly modified notation and setting
\begin_inset Formula $d_{c}=2$
\end_inset
:
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t
\]
\end_inset
or, evaluated at point
\begin_inset Formula $\vect s+\vect r$
\end_inset
instead
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{1/\eta}^{\infty e^{i\pi/4}}e^{-\kappa^{2}\gamma^{2}t^{2}/4}e^{-\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2}/t^{2}}t^{-1}\ud t
\]
\end_inset
The integral can be by substitutions taken into the form
\begin_inset Note Note
status open
\begin_layout Plain Layout
\lang english
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta
\]
\end_inset
Try substitution
\begin_inset Formula $t=\zeta^{2}$
\end_inset
: then
\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$
\end_inset
(
\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$
\end_inset
) and
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t
\]
\end_inset
Try subst.
\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$
\end_inset
\end_layout
\begin_layout Plain Layout
\lang english
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau
\]
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{-1}\ud\tau
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Foot
status open
\begin_layout Plain Layout
[Linton, (2.25)] with slightly modified notation:
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect r}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K}
\]
\end_inset
We want to express an expansion in a shifted point, so let's substitute
\begin_inset Formula $\vect r\to\vect s+\vect r$
\end_inset
\begin_inset Formula
\[
G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)=-\frac{1}{\sqrt{4\pi}\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\sum_{j=0}^{\infty}\frac{\left(-1\right)^{j}\left|\vect s^{\bot}+\vect r^{\bot}\right|^{2j}}{j!}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2j-1}\Gamma_{j\vect K}
\]
\end_inset
\end_layout
\end_inset
Let's do the integration to get
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
\end_inset
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\left(\vect s+\vect r\right)}\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau
\]
\end_inset
The
\begin_inset Formula $\vect r$
\end_inset
-dependent plane wave factor can be also written as
\begin_inset Formula
\begin{align*}
e^{i\vect K\cdot\vect r} & =e^{i\left|\vect K\right|\vect r\cdot\uvec K}=4\pi\sum_{lm}i^{l}\mathcal{J}'_{l}^{m}\left(\left|\vect K\right|\vect r\right)\ush lm\left(\uvec K\right)\\
& =4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec{\vect r}\right)\ush lm\left(\uvec K\right)
\end{align*}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
or the other way around
\begin_inset Formula
\[
e^{i\vect K\cdot\vect r}=4\pi\sum_{lm}i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec{\vect r}\right)\ushD lm\left(\uvec K\right)
\]
\end_inset
\end_layout
\end_inset
so
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau
\]
\end_inset
\end_layout
\begin_layout Standard
We also have
\begin_inset Formula
\begin{align*}
e^{-\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau} & =e^{-\left(\left|\vect s_{\bot}\right|^{2}+\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\\
& =e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4\tau}\right)^{n},
\end{align*}
\end_inset
hence
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD lm\left(\uvec r\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\underbrace{\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect s_{\bot}\right|^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1-n}\ud\tau}_{\Delta_{n+1/2}}\\
& =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\Delta_{n+1/2}}{n!}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}\\
& =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2(n-k)}\left(2\vect r_{\bot}\cdot\vect s_{\bot}\right)^{k}
\end{align*}
\end_inset
If we label
\begin_inset Formula $\left|\vect r_{\bot}\right|\left|\vect s_{\bot}\right|\cos\varphi\equiv\vect r_{\bot}\cdot\vect s_{\bot}$
\end_inset
, we have
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left|\vect r_{\bot}\right|^{2n-k}\left(\cos\varphi\right)^{k}
\]
\end_inset
and if we label
\begin_inset Formula $\left|\vect r\right|\sin\vartheta\equiv\left|\vect r_{\bot}\right|$
\end_inset
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\left|\vect r\right|^{2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{2n-k}\left(\cos\varphi\right)^{k}
\]
\end_inset
Now let's put the RHS into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
and try eliminating some sum by taking the limit
\begin_inset Formula $\left|\vect r\right|\to0$
\end_inset
.
We have
\begin_inset Formula $j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\sim\left(\left|\vect K\right|\left|\vect r\right|\right)^{l}/\left(2l+1\right)!!$
\end_inset
; the denominator from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:tau extraction formula"
plural "false"
caps "false"
noprefix "false"
\end_inset
behaves like
\begin_inset Formula $j_{l'}\left(\kappa\left|\vect r\right|\right)\sim\left(\kappa\left|\vect r\right|\right)^{l'}/\left(2l'+1\right)!!.$
\end_inset
The leading terms are hence those with
\begin_inset Formula $\left|\vect r\right|^{l-l'+2n-k}$
\end_inset
.
So
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush lm\left(\uvec K\right)\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{k=0}^{n}\delta_{l'-l,2n-k}\left(2\left|\vect s_{\bot}\right|\right)^{k}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}.
\]
\end_inset
Let's now focus on rearranging the sums; we have
\begin_inset Formula
\[
S(l')\equiv\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,k)=\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}\sum_{k=0}^{n}\delta_{l'-l,2n-k}f(l',l,n,2n-l'+l)
\]
\end_inset
We have
\begin_inset Formula $0\le k\le n$
\end_inset
, hence
\begin_inset Formula $0\le2n-l'+l\le n$
\end_inset
, hence
\begin_inset Formula $-2n\le-l'+l\le-n$
\end_inset
, hence also
\begin_inset Formula $l'-2n\le l\le l'-n$
\end_inset
, which gives the opportunity to swap the
\begin_inset Formula $l,n$
\end_inset
sums and the
\begin_inset Formula $l$
\end_inset
-sum becomes finite; so also consuming
\begin_inset Formula $\sum_{k=0}^{n}\delta_{l'-l,2n-k}$
\end_inset
we get
\begin_inset Formula
\[
S(l')=\sum_{n=0}^{\infty}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l).
\]
\end_inset
Finally, we see that the interval of valid
\begin_inset Formula $l$
\end_inset
becomes empty when
\begin_inset Formula $l'-n<0$
\end_inset
, i.e.
\begin_inset Formula $n>l'$
\end_inset
; so we get a finite sum
\begin_inset Formula
\[
S(l')=\sum_{n=0}^{l'}\sum_{l=\max(0,l'-2n)}^{l'-n}f(l',l,n,2n-l'+l).
\]
\end_inset
Applying rearrangement,
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\sum_{m=-l}^{l}\ush lm\left(\uvec K\right)\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}.
\]
\end_inset
\end_layout
\begin_layout Section
Z-aligned lattice
\end_layout
\begin_layout Standard
Now we set some conventions: let the lattice lie on the
\begin_inset Formula $z$
\end_inset
axis, so that
\begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$
\end_inset
lie in the
\begin_inset Formula $xy$
\end_inset
-plane.
\begin_inset Note Note
status open
\begin_layout Plain Layout
(TODO check the meaning of
\begin_inset Formula $\vect k$
\end_inset
and possible additional phase factor.)
\end_layout
\end_inset
If we write
\begin_inset Formula $\vect s_{\bot}=\uvec x\left|\vect s_{\bot}\right|\cos\Phi+\uvec y\left|\vect s_{\bot}\right|\sin\Phi$
\end_inset
,
\begin_inset Formula $\vect r_{\bot}=\uvec x\left|\vect r_{\bot}\right|\cos\phi+\uvec y\left|\vect r_{\bot}\right|\sin\phi=\uvec x\left|\vect r\right|\sin\theta\cos\phi+\uvec y\left|\vect r\right|\sin\theta\sin\phi$
\end_inset
, we have
\begin_inset Formula $\varphi=\phi-\Phi$
\end_inset
, and
\begin_inset Formula $\vartheta=\theta$
\end_inset
.
Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset
for
\begin_inset Formula $m\ne0$
\end_inset
, so
\begin_inset Formula
\[
\tau_{l'}^{m'}\left(\vect s,\vect k\right)=\frac{-i}{2\pi\mathcal{A}\kappa^{1+l'}}\left(2l'+1\right)!!\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{n=0}^{l'}\frac{\left(-1\right)^{n}}{n!}\Delta_{n+1/2}\left(\frac{\kappa\gamma_{\vect K}}{2}\right)^{2n}\sum_{l=\max\left(0,l'-2n\right)}^{l'-n}4\pi i^{l}\left(2\left|\vect s_{\bot}\right|\right)^{2n-l'+l}\frac{\left|\vect K\right|^{l}}{\left(2l+1\right)!!}\ush l0\left(\uvec K\right)\underbrace{\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}}_{\equiv A_{l',l,n,m'}}.
\]
\end_inset
Let's also fix the (dual) spherical harmonics for now,
\begin_inset Formula
\[
\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right);
\]
\end_inset
the angular integral then becomes (we also use
\begin_inset Formula $e^{-im'\phi}=e^{im'\Phi}e^{-im'\varphi}$
\end_inset
)
\begin_inset Formula
\begin{align*}
A_{l',l,n,m'} & \equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\left(\sin\theta\right)^{l'-l}\left(\cos\varphi\right)^{2n-l'+l}\\
& =\lambda'_{l'm'}\lambda'_{l0}e^{im'\Phi}\int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}\int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}.
\end{align*}
\end_inset
The asimuthal integral evaluates to
\begin_inset Formula
\[
\int_{0}^{2\pi}\ud\varphi\,e^{-im'\varphi}\left(\cos\varphi\right)^{2n-l'+l}=\pi\delta_{\left|m'\right|,2n-l'+l}
\]
\end_inset
(note that
\begin_inset Formula $2n-l'+l\ge0$
\end_inset
as it's the former index
\begin_inset Formula $k$
\end_inset
).
That eliminates one of the two remaining (finite) sums.
We are left with the polar integral
\begin_inset Formula
\[
\int_{0}^{\pi}\ud\theta\,\sin\theta P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}
\]
\end_inset
for which I couldn't find an explicit form yet.
\end_layout
\begin_layout Section
X-aligned lattice
\end_layout
\begin_layout Standard
If we instead set
\begin_inset Formula $\vect s_{\bot}=\uvec z\left|\vect s_{\bot}\right|\cos\Theta+\uvec y\left|\vect s_{\bot}\right|\sin\Theta$
\end_inset
,
\begin_inset Formula $\vect r_{\bot}=\uvec z\left|\vect r_{\bot}\right|\cos\theta+\uvec y\left|\vect r_{\bot}\right|\sin\theta=\uvec z\left|\vect r\right|\cos\theta+\uvec y\left|\vect r\right|\sin\theta\sin\phi$
\end_inset
, we have
\begin_inset Formula $\vartheta=\Theta-\theta$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD lm\left(\uvec r\right)\left(\sin\vartheta\right)^{l'-l}\left(\cos\varphi\right)^{k}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
BTW:
\begin_inset Formula
\begin{align*}
\left|\vect r_{\bot}\right|^{2} & =\left|\vect r\right|^{2}-\left|\vect r_{\parallel}\right|^{2}=\left|\vect r\right|^{2}-\left(\vect r\cdot\uvec K\right)^{2},\\
\vect r_{\bot}\cdot\vect s_{\bot} & =\vect r\cdot\vect s_{\bot}
\end{align*}
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Now we set the conventions: let the lattice lie on the
\begin_inset Formula $z$
\end_inset
axis, so that
\begin_inset Formula $\vect s_{\bot},\vect r_{\bot}$
\end_inset
lie in the
\begin_inset Formula $xy$
\end_inset
-plane, (TODO check the meaning of
\begin_inset Formula $\vect k$
\end_inset
and possible additional phase factor.) If we write
\begin_inset Formula $\vect s_{\bot}=\uvec xs_{\bot}\cos\Phi+\uvec ys_{\bot}\sin\Phi$
\end_inset
,
\begin_inset Formula $\vect r_{\bot}=\uvec xr_{\bot}\cos\phi+\uvec yr_{\bot}\sin\phi=\uvec xr\sin\theta\cos\phi+\uvec yr\sin\theta\sin\phi$
\end_inset
, we have
\begin_inset Formula
\[
\left|\vect s_{\bot}+\vect r_{\bot}\right|^{2}=s_{\bot}^{2}+r^{2}\left(\sin\theta\right)^{2}+2s_{\bot}r\sin\theta\cos\left(\phi-\Phi\right).
\]
\end_inset
\end_layout
\begin_layout Plain Layout
Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset
for
\begin_inset Formula $m\ne0$
\end_inset
, so
\end_layout
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right) & =-\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{lm}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ush l0\left(\uvec K\right)\times\\
& \quad\times\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\ushD l0\left(\uvec r\right)\sum_{n=0}^{\infty}\Delta_{n+1/2}\frac{1}{n!}\left(-\frac{\left(\left|\vect r_{\bot}\right|^{2}+2\vect r_{\bot}\cdot\vect s_{\bot}\right)\kappa^{2}\gamma_{\vect K}^{2}}{4}\right)^{n}.
\end{align*}
\end_inset
Let's also fix the spherical harmonics for now,
\begin_inset Formula
\[
\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right)
\]
\end_inset
Also, in this convention
\begin_inset Formula $\ush lm\left(\uvec K\right)=0$
\end_inset
for
\begin_inset Formula $m\ne0$
\end_inset
, so
\begin_inset Formula
\[
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(1;\kappa)}\left(\vect s+\vect r\right)\ushD{l'}{m'}\left(\uvec r\right)=-\frac{1}{2\pi\mathcal{A}}\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)\frac{1}{2\pi\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}e^{i\vect K\cdot\vect s}\sum_{l}4\pi i^{l}j_{l}\left(\left|\vect K\right|\left|\vect r\right|\right)\ushD l0\left(\uvec r\right)\ush l0\left(\uvec K\right)\int_{\kappa^{2}\gamma_{\vect K}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left(s_{\bot}^{2}+r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\tau^{-1}\ud\tau
\]
\end_inset
\end_layout
\begin_layout Plain Layout
Let's also fix the spherical harmonics for now,
\begin_inset Formula
\[
\ushD lm\left(\uvec r\right)=\lambda'_{lm}e^{-im\phi}P_{l}^{-m}\left(\cos\theta\right)
\]
\end_inset
\end_layout
\begin_layout Plain Layout
The angular integral (assuming it can be separated from the rest like this)
is
\begin_inset Formula
\[
I_{l'}^{m'}\equiv\int\ud\Omega_{\vect r}\,\ushD{l'}{m'}\left(\uvec r\right)e^{-\left(r_{\bot}^{2}+2s_{\bot}r_{\bot}\cos\left(\phi-\Phi\right)\right)^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}
\]
\end_inset
\end_layout
\begin_layout Plain Layout
Let's further extract the azimuthal part
\begin_inset Formula $\left(w\equiv2r_{\bot}s_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)$
\end_inset
\begin_inset Formula
\[
e^{-im'\Phi}A_{l'}^{m'}\equiv\int_{0}^{2\pi}e^{-im'\phi}e^{-w\cos\left(\phi-\Phi\right)}\ud\phi=e^{-im'\Phi}\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi
\]
\end_inset
Using [DLMF 10.9.2],
\begin_inset Formula $\int_{0}^{2\pi}e^{-im'\varphi}e^{-w\cos\varphi}\ud\varphi=\int_{0}^{2\pi}\cos\left(m'\varphi\right)e^{i(iw)\cos\varphi}=2\pi i^{m'}J_{m'}\left(iw\right)$
\end_inset
we have
\begin_inset Formula
\[
e^{-m'\Phi}A_{l'}^{m'}=2\pi i^{m'}J_{m'}\left(iw\right),
\]
\end_inset
assuming that
\begin_inset Formula $w$
\end_inset
is real (which does not necessarily have to be true!); numerical experiments
in Sage show that the result is valid also for complex
\begin_inset Formula $w$
\end_inset
.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\
& =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\left(e^{i\varphi}+e^{-i\varphi}\right)^{n}\ud\varphi\\
& =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\int_{0}^{2\pi}e^{-im\varphi}\sum_{k=0}^{n}\binom{n}{k}e^{ik\varphi}e^{-i\left(n-k\right)\varphi}\ud\varphi\\
& =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\int_{0}^{2\pi}e^{i\left(2k-n-m\right)\varphi}\ud\varphi\\
& =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{2k-n-m=0}\\
& =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{2k-n-m=0}\\
& =2\pi\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\binom{n}{k}\delta_{2k-n-m=0}\\
& =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k-m}}{2^{2k-m}\left(2k-m\right)!}\binom{2k-m}{k}\delta_{2k-m\ge k}\\
& =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k-m}}{2^{2k-m}}\frac{1}{k!\left(k-m\right)!}\delta_{k-m\ge0}\\
& =2\pi\sum_{k=\max\left(m,0\right)}^{\infty}\left(-\frac{w}{2}\right)^{2k-m}\frac{1}{k!\left(k-m\right)!}
\end{align*}
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
A_{l}^{m} & =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\cos\varphi\right)^{n}}{n!}\ud\varphi\\
& =\int_{0}^{2\pi}e^{-im\varphi}\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\left(e^{i\varphi}+e^{-i\varphi}\right)^{n}\ud\varphi\\
& =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\int_{0}^{2\pi}e^{-im\varphi}\sum_{k=0}^{n}\binom{n}{k}e^{i\left(n-k\right)\varphi}e^{-ik\varphi}\ud\varphi\\
& =\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\int_{0}^{2\pi}e^{i\left(-2k+n-m\right)\varphi}\ud\varphi\\
& =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{-2k+n-m=0}\\
& =2\pi\sum_{n=0}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\sum_{k=0}^{n}\binom{n}{k}\delta_{-2k+n-m=0}\\
& =2\pi\sum_{k=0}^{\infty}\sum_{n=k}^{\infty}\frac{\left(-w\right)^{n}}{2^{n}n!}\binom{n}{k}\delta_{-2k+n-m=0}\\
& =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}\left(2k+m\right)!}\binom{2k+m}{k}\delta_{2k+m\ge k}\\
& =2\pi\sum_{k=0}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}}\frac{1}{k!\left(k+m\right)!}\delta_{k+m\ge0}\\
& =2\pi\sum_{k=\max\left(-m,0\right)}^{\infty}\frac{\left(-w\right)^{2k+m}}{2^{2k+m}}\frac{1}{k!\left(k+m\right)!}
\end{align*}
\end_inset
\end_layout
\end_inset
Althought it's not superobvious, this sum is symmetric w.r.t.
sign change in
\begin_inset Formula $m$
\end_inset
.
\end_layout
\begin_layout Plain Layout
Let's do the polar integration next:
\begin_inset Formula $r_{\bot}=r\sin\theta$
\end_inset
\begin_inset Formula
\[
B_{l'}^{m'}\equiv\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-\left(\sin\theta\right)^{2}r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau}\left(-\sin\theta\,rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau\right)^{2k-m'}
\]
\end_inset
Label
\begin_inset Formula $u\equiv r^{2}\kappa^{2}\gamma_{\vect K}^{2}/4\tau,v\equiv rs_{\bot}\kappa^{2}\gamma_{\vect K}^{2}/4\tau$
\end_inset
; then
\begin_inset Formula
\begin{align*}
B_{l'}^{m'} & =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)e^{-u\left(\sin\theta\right)^{2}}\left(-v\sin\theta\right)^{2k-m'}\\
& =\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(-v\sin\theta\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\left(\sin\theta\right)^{2a}\\
& =\left(-v\right)^{2k-m'}\sum_{a=0}^{\infty}\frac{\left(-u\right)^{a}}{a!}\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{2a+2k-m'}
\end{align*}
\end_inset
If we now perform the limit
\begin_inset Formula $r\to0$
\end_inset
and compare the radial parts (incl.
those in
\begin_inset Formula $u,v$
\end_inset
) powers, the leading term indices will have
\begin_inset Formula
\[
l'\sim l+2a+2k-m'
\]
\end_inset
so we can fix
\begin_inset Formula $2a+2k-m'=l'-l$
\end_inset
and get
\begin_inset Formula
\[
\int_{0}^{\pi}\sin\theta\ud\theta\,P_{l'}^{-m'}\left(\cos\theta\right)P_{l}^{0}\left(\cos\theta\right)\left(\sin\theta\right)^{l'-l}=\begin{cases}
0 & l'-l+m'\text{ odd}\\
? & l'-l+m'\text{ even}
\end{cases}
\]
\end_inset
\end_layout
\end_inset
\begin_inset Formula $ $
\end_inset
\end_layout
\end_body
\end_document

View File

@ -1,305 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang english
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\sgn}{\operatorname{sgn}}
{\mathrm{sgn}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\nats}{\mathbb{N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgfr}{\mathbf{F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}{F}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\mathrm{ph}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\kor}[1]{\underline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\koru}[1]{\utilde{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\swv}{\mathscr{H}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\expint}{\mathrm{E}}
\end_inset
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray}
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
& = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
\end{eqnarray}
\end_inset
For
\begin_inset Formula $z\ne0$
\end_inset
\begin_inset Formula
\begin{align*}
& =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
& \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\frac{\Delta_{npq}}{j!}\left(-1\right)^{j}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\binom{j}{2j-s}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}\\
& =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
& \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\Delta_{npq}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\frac{\left(-1\right)^{j}}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}
\end{align*}
\end_inset
\end_layout
\begin_layout Section
\lang english
Ewald long range integral
\end_layout
\begin_layout Standard
\lang english
Linton has (2.24):
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta
\]
\end_inset
Try substitution
\begin_inset Formula $t=\zeta^{2}$
\end_inset
: then
\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$
\end_inset
(
\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$
\end_inset
) and
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t
\]
\end_inset
Try subst.
\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$
\end_inset
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\[
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau
\]
\end_inset
\end_layout
\end_body
\end_document

View File

@ -1,386 +0,0 @@
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang english
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\lang finnish
\begin_inset FormulaMacro
\newcommand{\Kambe}[1]{#1^{\mathrm{K}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Linton}[1]{#1^{\mathrm{L}}}
\end_inset
\end_layout
\begin_layout Standard
Here and in Kambe's papers,
\begin_inset Formula $\kappa$
\end_inset
is the wavenumber (
\begin_inset Formula $k$
\end_inset
in Linton).
Here
\begin_inset Formula $\vect K_{p}$
\end_inset
is a point of the reciprocal lattice (
\begin_inset Formula $\vect K_{p}=\Kambe{\vect K_{pt}}=\Linton{\vect{\beta}_{\mu}}$
\end_inset
)
\end_layout
\begin_layout Section
\begin_inset Quotes eld
\end_inset
Gammas
\begin_inset Quotes erd
\end_inset
\end_layout
\begin_layout Standard
For
\begin_inset Formula $\kappa$
\end_inset
positive,
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\Kambe{\Gamma_{p}}\equiv\begin{cases}
\sqrt{\kappa^{2}-\left|\vect K_{p}\right|^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}>0\\
i\sqrt{\left|\vect K_{p}\right|^{2}-\kappa^{2}} & \kappa^{2}-\left|\vect K_{p}\right|^{2}<0
\end{cases}
\]
\end_inset
\begin_inset Formula
\[
\Linton{\gamma_{\mu}}\equiv\begin{cases}
\sqrt{\left(\frac{\vect K_{p}}{\kappa}\right)^{2}-1} & \kappa-\left|\vect K_{p}\right|\le0\\
-i\sqrt{1-\left(\frac{\vect K_{p}}{\kappa}\right)^{2}} & \kappa-\left|\vect K_{p}\right|>0
\end{cases}
\]
\end_inset
hence
\begin_inset Formula
\[
\Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}},
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\Linton{\gamma_{\mu}}=i\frac{\Kambe{\Gamma_{p}}}{\kappa}.
\]
\end_inset
\end_layout
\begin_layout Section
D vs sigma
\end_layout
\begin_layout Standard
In-plane sums [Linton 2009, (4.5)], replacing
\begin_inset Formula $n,m\rightarrow L,M$
\end_inset
,
\begin_inset Formula $k\rightarrow\kappa$
\end_inset
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
\sigma_{L}^{M(1)} & = & -\frac{i^{L+1}}{2\kappa^{2}\mathscr{A}}\left(-1\right)^{\left(L+M\right)/2}\sqrt{\left(2L+1\right)\left(L-M\right)!\left(L+M\right)!}\times\\
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(L-\left|M\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2\kappa\right)^{L-2j}e^{iM\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(L-M\right)-j\right)!\left(\frac{1}{2}\left(L+M\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}
\end{eqnarray*}
\end_inset
[Kambe II, (3.17)], replacing
\lang finnish
\begin_inset Formula $n\rightarrow j$
\end_inset
\lang english
,
\lang finnish
\begin_inset Formula $A\rightarrow\mathscr{A}$
\end_inset
,
\begin_inset Formula $\vect K_{pt}\to\vect K_{p}$
\end_inset
,
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,e^{-i\pi}\Gamma_{p}^{2}\omega/2\right)\to\Gamma_{j,p}$
\end_inset
and performing little typographic modifications
\lang english
\begin_inset Formula
\begin{align*}
D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(\Gamma_{p}/\kappa\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
\end{align*}
\end_inset
Using the relations between
\begin_inset Formula $\Kambe{\Gamma_{p}}=-i\kappa\Linton{\gamma_{\mu}}$
\end_inset
, we have (also, we replace the
\begin_inset Formula $\mu$
\end_inset
index with
\begin_inset Formula $p$
\end_inset
)
\begin_inset Formula
\begin{align*}
D_{LM} & =-\frac{1}{\mathscr{A}\kappa}i^{\left|M\right|+1}2^{-L}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ijt}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\gamma_{p}\right)^{2j-1}\left(K_{p}/\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}
\end{align*}
\end_inset
and now, trying to make the exponents look the same as in Linton,
\begin_inset Formula $2^{-1}2^{2j-L}2^{1-2j}=2^{-L}$
\end_inset
(OK),
\begin_inset Formula $K_{p}^{L-2j}=K_{p}^{L-2j}$
\end_inset
(OK),
\begin_inset Formula
\begin{align*}
D_{LM} & =-\frac{1}{2\kappa\mathscr{A}}i^{\left|M\right|+1}\sqrt{\left(2L+1\right)\left(L+\left|M\right|\right)!\left(L-\left|M\right|\right)!}\times\\
& \quad\times\sum_{p}e^{i\vect K_{p}\cdot\vect c_{ij}}e^{-iM\phi_{K_{p}}}\sum_{j=0}^{\left(L-\left|M\right|\right)/2}\frac{\left(-i\right)^{2j-1}\left(K_{p}/2\kappa\right)^{L-2j}\Gamma_{j,p}}{j!\left(\frac{1}{2}\left(L-\left|M\right|\right)-j\right)!\left(\frac{1}{2}\left(L+\left|M\right|\right)-j\right)!}\left(\frac{\gamma_{p}}{2}\right)^{2j-1}
\end{align*}
\end_inset
There are now these differences left:
\end_layout
\begin_layout Itemize
\lang english
Additional
\begin_inset Formula $\kappa$
\end_inset
factor in
\begin_inset Formula $D_{LM}$
\end_inset
\end_layout
\begin_layout Itemize
\lang english
\begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}\left(-1\right)^{j}$
\end_inset
vs.
\begin_inset Formula $i^{\left|M\right|+1}\left(-i\right)^{2j-1}$
\end_inset
\end_layout
\begin_layout Itemize
\lang english
Opposite phase in the angular part.
\end_layout
\begin_layout Itemize
\lang english
Plane wave factor in
\begin_inset Formula $D_{LM}$
\end_inset
\end_layout
\begin_layout Standard
\lang english
Let's look at the
\begin_inset Formula $i,-1$
\end_inset
factors (note that
\begin_inset Formula $L+M$
\end_inset
is odd):
\begin_inset Formula $\left(-i\right)^{2j}=\left(-1\right)^{j},$
\end_inset
leaving
\begin_inset Formula $i^{L+1}\left(-1\right)^{\left(L+M\right)/2}$
\end_inset
vs.
\begin_inset Formula $i^{\left|M\right|+1}i$
\end_inset
.
So there is might be a phase difference due to different conventions, but
it does not depend on
\begin_inset Formula $j$
\end_inset
, so one should be able to transplant the
\begin_inset Formula $z\ne0$
\end_inset
sum from Kambe without major problems.
\end_layout
\begin_layout Section
Ewald parameter (integration limits)
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\Linton{\eta}=\sqrt{\frac{1}{2\Kambe{\omega}}}
\]
\end_inset
(Based on comparison of some function arguments, not checked.)
\end_layout
\end_body
\end_document

View File

@ -7,35 +7,25 @@ find_package(LAPACK REQUIRED)
# and other not very relevant warnings
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wno-int-in-bool-context -Wno-comment")
# version file
include(GetGitRevisionDescription)
get_git_head_revision(GIT_REFSPEC GIT_SHA1)
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/version.c.in" "${CMAKE_CURRENT_BINARY_DIR}/version.c" @ONLY)
list(APPEND SOURCES "${CMAKE_CURRENT_BINARY_DIR}/version.c" version.h)
#includes
set (DIRS ${GSL_INCLUDE_DIRS} ${GSLCBLAS_INCLUDE_DIRS})
include_directories(${DIRS})
add_library (qpms SHARED translations.c tmatrices.c vecprint.c vswf.c wigner.c ewald.c
ewaldsf.c pointgroups.c latticegens.c
lattices2d.c gaunt.c error.c legendre.c symmetries.c vecprint.c
bessel.c own_zgemm.c parsing.c scatsystem.c materials.c drudeparam_data.c
lll.c beyn.c trivialgroup.c version.c
lll.c beyn.c scatsys_translation_booster.c
)
use_c99()
set(LIBS ${LIBS} ${GSL_LIBRARIES} ${GSLCBLAS_LIBRARIES})
target_link_libraries (qpms
${GSL_LIBRARIES}
${LAPACK_LIBRARIES}
${BLAS_LIBRARIES}
${QPMS_AMOSLIB}
Faddeeva
gsl
lapack
blas
amos
)
target_include_directories (qpms PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -1,3 +1,5 @@
from pkg_resources import get_distribution
__version__ = get_distribution('qpms').version
import os as __os
from sys import platform as __platform
@ -5,7 +7,7 @@ from sys import platform as __platform
import warnings as __warnings
try:
from .qpms_c import PointGroup, FinitePointGroup, FinitePointGroupElement, Particle, scatsystem_set_nthreads, ScatteringSystem, ScatteringMatrix, pitau, set_gsl_pythonic_error_handling, pgsl_ignore_error, gamma_inc, lll_reduce, qpms_library_version
from .qpms_c import PointGroup, FinitePointGroup, FinitePointGroupElement, Particle, scatsystem_set_nthreads, ScatteringSystem, ScatteringMatrix, pitau, set_gsl_pythonic_error_handling, pgsl_ignore_error, gamma_inc, lll_reduce, ScatteringSystemCachingMode
except ImportError as ex:
if __platform == "linux" or __platform == "linux2":
if 'LD_LIBRARY_PATH' not in __os.environ.keys():
@ -22,12 +24,7 @@ from .cymaterials import MaterialInterpolator, EpsMu, LorentzDrudeModel, lorentz
from .cycommon import dbgmsg_enable, dbgmsg_disable, dbgmsg_active, BesselType, VSWFType
from .cywaves import vswf_single
def __version__():
from pkg_resources import get_distribution
librev = qpms_library_version()
return get_distribution('qpms').version + (("lr:"+librev) if librev else "")
#from .qpms_p import * # don't import automatically (adds around 0.5 s delay and depends on scipy)
from .qpms_p import * # maybe don't import automatically in the future (adds around 0.5 s delay)
from .constants import *
# legacy code which brutally slows down the whole package init:

View File

@ -1,17 +1,9 @@
'''
Common snippets for argument processing in command line scripts.
Common snippets for argument processing in command line scripts; legacy scripts use scripts_common.py instead.
'''
import argparse
import sys
import warnings
def flatten(S):
if S == []:
return S
if isinstance(S[0], list):
return flatten(S[0]) + flatten(S[1:])
return S[:1] + flatten(S[1:])
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
@ -21,40 +13,6 @@ def make_action_sharedlist(opname, listname):
getattr(args, listname).append((opname, values))
return opAction
def make_dict_action(argtype=None, postaction='store', first_is_key=True):
class DictAction(argparse.Action):
#def __init__(self, option_strings, dest, nargs=None, **kwargs):
# if nargs is not None:
# raise ValueError("nargs not allowed")
# super(DictAction, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if first_is_key: # For the labeled versions
key = values[0]
vals = values[1:]
else: # For the default values
key = None
vals = values
if argtype is not None:
if (first_is_key and self.nargs == 2) or (not first_is_key and self.nargs == 1):
vals = argtype(vals[0]) # avoid having lists in this case
else:
vals = [argtype(val) for val in vals]
ledict = getattr(namespace, self.dest, {})
if ledict is None:
ledict = {}
if postaction=='store':
ledict[key] = vals
elif postaction=='append':
lelist = ledict.get(key, [])
lelist.append(vals)
ledict[key] = lelist
setattr(namespace, self.dest, ledict)
return DictAction
class ArgumentProcessingError(Exception):
pass
class AppendTupleAction(argparse.Action):
''' A variation on the 'append' builtin action from argparse, but uses tuples for the internal groupings instead of lists '''
def __call__(self, parser, args, values, option_string=None):
@ -62,299 +20,51 @@ class AppendTupleAction(argparse.Action):
setattr(args, self.dest, list())
getattr(args, self.dest).append(tuple(values))
def float_range(string):
"""Tries to parse a string either as one individual float value
or one of the following patterns:
first:last:increment
first:last|steps
first:last
(The last one is equivalent to first:last|50.)
Returns either float or numpy array.
"""
try:
res = float(string)
return res
except ValueError:
import re
steps = None
match = re.match(r's?([^:]+):([^|]+)\|(.+)', string)
if match:
steps = int(match.group(3))
else:
match = re.match(r's?([^:]+):([^:]+):(.+)', string)
if match:
increment = float(match.group(3))
else:
match = re.match(r's?([^:]+):(.+)', string)
if match:
steps = 50
else:
argparse.ArgumentTypeError('Invalid float/sequence format: "%s"' % string)
first = float(match.group(1))
last = float(match.group(2))
import numpy as np
if steps is not None:
return np.linspace(first, last, num=steps)
else:
return np.arange(first, last, increment)
def int_or_None(string):
"""Tries to parse a string either as an int or None (if it contains only whitespaces)"""
try:
return int(string)
except ValueError as ve:
if string.strip() == '':
return None
else:
raise ve
def sslice(string):
"""Tries to parse a string either as one individual int value
or one of the following patterns:
first:last:increment
first:last
first, last and increment must be parseable as ints
or be empty (then
In each case, 's' letter can be prepended to the whole string to avoid
argparse interpreting this as a new option (if the argument contains
'-' or '+').
Returns either int or slice containing ints or Nones.
"""
if string[0] == 's':
string = string[1:]
try:
res = int(string)
return res
except ValueError:
import re
match = re.match(r'([^:]*):([^:]*):(.*)', string)
if match:
step = int_or_None(match.group(3))
else:
match = re.match(r'([^:]*):(.*)', string)
if match:
step = None
else:
argparse.ArgumentTypeError('Invalid int/slice format: "%s"' % string)
start = int_or_None(match.group(1))
stop = int_or_None(match.group(2))
return slice(start, stop, step)
def sfloat(string):
'''Tries to match a float, or a float with prepended 's'
Used as a workaraound for argparse's negative number matcher, which does not recognize
scientific notation.
'''
try:
res = float(string)
except ValueError as exc:
if string[0] == 's':
res = float(string[1:])
else: raise exc
return res
def sint(string):
'''Tries to match an int, or an int with prepended 's'
Used as a workaraound for argparse's negative number matcher if '+' is used as a
prefix
'''
try:
res = int(string)
except ValueError as exc:
if string[0] == 's':
res = int(string[1:])
else: raise exc
return res
def material_spec(string):
"""Tries to parse a string as a material specification, i.e. a
real or complex number or one of the string in built-in Lorentz-Drude models.
Tries to interpret the string as 1) float, 2) complex, 3) Lorentz-Drude key.
Raises argparse.ArgumentTypeError on failure.
"""
from .cymaterials import lorentz_drude
if string in lorentz_drude.keys():
return string
else:
try: lemat = float(string)
except ValueError:
try: lemat = complex(string)
except ValueError as ve:
raise argparse.ArgumentTypeError("Material specification must be a supported material name %s, or a number" % (str(lorentz_drude.keys()),)) from ve
return lemat
class ArgParser:
''' Common argument parsing engine for QPMS python CLI scripts. '''
def __add_planewave_argparse_group(ap):
pwgrp = ap.add_argument_group('Incident wave specification', """
Incident wave direction is given in terms of ISO polar and azimuthal angles θ, φ,
which translate into cartesian coordinates as r̂ = (x, y, z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).
Wave polarisation is given in terms of parameters ψ, χ, where ψ is the angle between a polarisation
ellipse axis and meridian tangent θ̂, and tg χ determines axes ratio;
the electric field in the origin is then
E = cos(χ) (cos(ψ) θ̂ + sin(ψ) φ̂) + i sin(χ) (sin(ψ) θ̂ + cos(ψ) φ̂).
All the angles are given as multiples of π/2.
""" # TODO EXAMPLES
)
pwgrp.add_argument("", "--phi", type=float, default=0,
help='Incident wave asimuth in multiples of π/2.')
pwgrp.add_argument("", "--theta", type=float_range, default=0,
help='Incident wave polar angle in multiples of π/2. This might be a sequence in format FIRST:LAST:INCREMENT.')
pwgrp.add_argument("", "--psi", type=float, default=0,
help='Angle between polarisation ellipse axis and meridian tangent θ̂ in multiples of π/2.')
pwgrp.add_argument("", "--chi", type=float, default=0,
help='Polarisation parameter χ in multiples of π/2. 0 for linear, 0.5 for circular pol.')
def __add_manyparticle_argparse_group(ap):
mpgrp = ap.add_argument_group('Many particle specification', "TODO DOC")
mpgrp.add_argument("-p", "--position", nargs='+', action=make_dict_action(argtype=sfloat, postaction='append',
first_is_key=False), help="Particle positions, cartesion coordinates (default particle properties)")
mpgrp.add_argument("+p", "++position", nargs='+', action=make_dict_action(argtype=sfloat, postaction='append',
first_is_key=True), help="Particle positions, cartesian coordinates (labeled)")
mpgrp.add_argument("-L", "--lMax", nargs=1, default={},
action=make_dict_action(argtype=int, postaction='store', first_is_key=False,),
help="Cutoff multipole degree (default)")
mpgrp.add_argument("+L", "++lMax", nargs=2,
action=make_dict_action(argtype=int, postaction='store', first_is_key=True,),
help="Cutoff multipole degree (labeled)")
mpgrp.add_argument("-m", "--material", nargs=1, default={},
action=make_dict_action(argtype=material_spec, postaction='store', first_is_key=False,),
help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index) (default)')
mpgrp.add_argument("+m", "++material", nargs=2,
action=make_dict_action(argtype=material_spec, postaction='store', first_is_key=True,),
help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index) (labeled)')
mpgrp.add_argument("-r", "--radius", nargs=1, default={},
action=make_dict_action(argtype=float, postaction='store', first_is_key=False,),
help='particle radius (sphere or cylinder; default)')
mpgrp.add_argument("+r", "++radius", nargs=2,
action=make_dict_action(argtype=float, postaction='store', first_is_key=True,),
help='particle radius (sphere or cylinder; labeled)')
mpgrp.add_argument("-H", "--height", nargs=1, default={},
action=make_dict_action(argtype=float, postaction='store', first_is_key=False,),
help='particle radius (cylinder; default)')
mpgrp.add_argument("+H", "++height", nargs=2,
action=make_dict_action(argtype=float, postaction='store', first_is_key=True,),
help='particle radius (cylinder; labeled)')
atomic_arguments = {
'rectlattice2d_periods': lambda ap: ap.add_argument("-p", "--period", type=float, nargs='+', required=True, help='square/rectangular lattice periods', metavar=('px','[py]')),
'rectlattice2d_counts': lambda ap: ap.add_argument("--size", type=int, nargs=2, required=True, help='rectangular array size (particle column, row count)', metavar=('NCOLS', 'NROWS')),
'single_frequency_eV': lambda ap: ap.add_argument("-f", "--eV", type=float, required=True, help='radiation angular frequency in eV'),
'multiple_frequency_eV_optional': lambda ap: ap.add_argument("-f", "--eV", type=float, nargs='*', help='radiation angular frequency in eV (additional)'),
'seq_frequency_eV': lambda ap: ap.add_argument("-F", "--eV-seq", type=float, nargs=3, required=True, help='uniform radiation angular frequency sequence in eV', metavar=('FIRST', 'INCREMENT', 'LAST')),
'real_frequencies_eV_ng': lambda ap: ap.add_argument("-f", "--eV", type=float_range, nargs=1, action='append', required=True, help='Angular frequency (or angular frequency range) in eV'), # nargs='+', action='extend' would be better, but action='extend' requires python>=3.8
'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', type=material_spec, required=True),
'single_material': lambda ap: ap.add_argument("-m", "--material", help='particle material (Au, Ag, ... for Lorentz-Drude or number for constant refractive index)', default='Au', required=True),
'single_radius': lambda ap: ap.add_argument("-r", "--radius", type=float, required=True, help='particle radius (sphere or cylinder)'),
'single_height': lambda ap: ap.add_argument("-H", "--height", type=float, help='cylindrical particle height; if not provided, particle is assumed to be spherical'),
'single_kvec2': lambda ap: ap.add_argument("-k", '--kx-lim', nargs=2, type=sfloat, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX')),
'single_kvec2': lambda ap: ap.add_argument("-k", '--kx-lim', nargs=2, type=float, required=True, help='k vector', metavar=('KX_MIN', 'KX_MAX')),
'kpi': lambda ap: ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)"),
'bg_real_refractive_index': lambda ap: ap.add_argument("-n", "--refractive-index", type=float, default=1., help='background medium strictly real refractive index'),
'bg_analytical': lambda ap: ap.add_argument("-B", "--background", type=material_spec, default=1., help="Background medium specification (constant real or complex refractive index, or supported material label)"),
'bg_refractive_index': lambda ap: ap.add_argument("-n", "--refractive-index", type=float, default=1.52, help='background medium refractive index'),
'single_lMax': lambda ap: ap.add_argument("-L", "--lMax", type=int, required=True, default=3, help='multipole degree cutoff'),
'single_lMax_extend': lambda ap: ap.add_argument("--lMax-extend", type=int, required=False, default=6, help='multipole degree cutoff for T-matrix calculation (cylindrical particles only'),
'outfile': lambda ap: ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)'), # TODO consider type=argparse.FileType('w')
'plot_out': lambda ap: ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)"),
'plot_do': lambda ap: ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path"),
'lattice2d_basis': lambda ap: ap.add_argument("-b", "--basis-vector", nargs='+', action=AppendTupleAction, help="basis vector in xy-cartesian coordinates (two required)", required=True, type=sfloat, dest='basis_vectors', metavar=('X', 'Y')),
'planewave_pol_angles': __add_planewave_argparse_group,
'multi_particle': __add_manyparticle_argparse_group,
'lattice2d_basis': lambda ap: ap.add_argument("-b", "--basis-vector", action=AppendTupleAction, help="basis vector in xy-cartesian coordinates (two required)", dest='basis_vectors', metavar=('X', 'Y')),
}
feature_sets_available = { # name : (description, dependencies, atoms not in other dependencies, methods called after parsing, "virtual" features provided)
'const_real_background': ("Background medium with constant real refractive index", (), ('bg_real_refractive_index',), ('_eval_const_background_epsmu',), ('background', 'background_analytical')),
'background' : ("Most general background medium specification currently supported", ('background_analytical',), (), (), ()),
'background_analytical' : ("Background medium model holomorphic for 'reasonably large' complex frequency areas", (), ('bg_analytical',), ('_eval_analytical_background_epsmugen',), ('background',)),
'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',), ()),
'multi_particle': ("One or more particle definition (shape [curently spherical or cylindrical]), materials, and positions)", ('background',), ('multi_particle',), ('_process_multi_particle',), ()),
'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), (), ()),
'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',), ()),
'omega_seq': ("Equidistant real frequency range with possibility of adding individual frequencies", (), ('seq_frequency_eV', 'multiple_frequency_eV_optional',), ('_eval_omega_seq',), ()),
'omega_seq_real_ng': ("Equidistant real frequency ranges or individual frequencies (new syntax)", (), ('real_frequencies_eV_ng',), ('_eval_omega_seq_real_ng',), ()),
'lattice2d': ("Specification of a generic 2d lattice (spanned by the x,y axes)", (), ('lattice2d_basis',), ('_eval_lattice2d',), ()),
'rectlattice2d': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", (), ('rectlattice2d_periods',), ('_eval_rectlattice2d',), ()),
'rectlattice2d_finite': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", ('rectlattice2d',), ('rectlattice2d_counts',), (), ()),
'planewave': ("Specification of a normalised plane wave (typically used for scattering) with a full polarisation state", (), ('planewave_pol_angles',), ("_process_planewave_angles",), ()),
feature_sets_available = { # name : (description, dependencies, atoms not in other dependencies, methods called after parsing)
'background': ("Background medium definition (currently only constant epsilon supported)", (), ('bg_refractive_index',), ('_eval_background_epsmu',)),
'single_particle': ("Single particle definition (shape [currently spherical or cylindrical]) and materials, incl. background)", ('background',), ('single_material', 'single_radius', 'single_height', 'single_lMax_extend'), ('_eval_single_tmgen',)),
'single_lMax': ("Single particle lMax definition", (), ('single_lMax',), ()),
'single_omega': ("Single angular frequency", (), ('single_frequency_eV',), ('_eval_single_omega',)),
'lattice2d': ("Specification of a generic 2d lattice (spanned by the x,y axes)", (), ('lattice2d_basis',), ('_eval_lattice2d',)),
'rectlattice2d': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", (), ('rectlattice2d_periods',), ('_eval_rectlattice2d',)),
'rectlattice2d_finite': ("Specification of a rectangular 2d lattice; conflicts with lattice2d", ('rectlattice2d',), ('rectlattice2d_counts',), ()),
}
def __init__(self, features=[]):
prefix_chars = '+-' if 'multi_particle' in features else '-'
self.ap = argparse.ArgumentParser(prefix_chars=prefix_chars)
self.ap = argparse.ArgumentParser()
self.features_enabled = set()
self.call_at_parse_list = []
self.parsed = False
for feat in features:
self.add_feature(feat)
self._emg_register = {} # EpsMuGenerator dictionary to avoid recreating equivalent instances; filled by _add_emg()
self._tmg_register = {} # TMatrixGenerator dictionary to avoid recreating equivalent instances; filled by _add_tmg()
self._bspec_register = {} # Dictionary of used BaseSpecs to keep the equivalent instances unique; filled by _add_bspec()
def _add_emg(self, emgspec):
"""Looks up whether if an EpsMuGenerator from given material_spec has been already registered, and if not, creates a new one"""
from .cymaterials import EpsMu, EpsMuGenerator, lorentz_drude
if emgspec in self._emg_register.keys():
return self._emg_register[emgspec]
else:
if isinstance(emgspec, (float, complex)):
emg = EpsMuGenerator(EpsMu(emgspec**2))
else:
emg = EpsMuGenerator(lorentz_drude[emgspec])
self._emg_register[emgspec] = emg
return emg
def _add_tmg(self, tmgspec):
"""Looks up whether if a T-matrix from given T-matrix specification tuple has been already registered, and if not, creates a new one
T-matrix specification shall be of the form
(bg_material_spec, fg_material_spec, shape_spec) where shape_spec is
(radius, height, lMax_extend)
"""
if tmgspec in self._tmg_register.keys():
return self._tmg_register[tmgspec]
else:
from .cytmatrices import TMatrixGenerator
bgspec, fgspec, (radius, height, lMax_extend) = tmgspec
bg = self._add_emg(bgspec)
fg = self._add_emg(fgspec)
if height is None:
tmgen = TMatrixGenerator.sphere(bg, fg, radius)
else:
tmgen = TMatrixGenerator.cylinder(bg, fg, radius, height, lMax_extend=lMax_extend)
self._tmg_register[tmgspec] = tmgen
return tmgen
def _add_bspec(self, key):
if key in self._bspec_register.keys():
return self._bspec_register[key]
else:
from .cybspec import BaseSpec
if isinstance(key, BaseSpec):
bspec = key
elif isinstance(key, int):
bspec = self._add_bspec(BaseSpec(lMax=key))
else: raise TypeError("Can't register this as a BaseSpec")
self._bspec_register[key] = bspec
return bspec
def add_feature(self, feat):
if feat not in self.features_enabled:
if feat not in ArgParser.feature_sets_available:
raise ValueError("Unknown ArgParser feature: %s" % feat)
#resolve dependencies
_, deps, atoms, atparse, provides_virtual = ArgParser.feature_sets_available[feat]
_, deps, atoms, atparse = ArgParser.feature_sets_available[feat]
for dep in deps:
self.add_feature(dep)
for atom in atoms: # maybe check whether that atom has already been added sometimes in the future?
@ -362,26 +72,16 @@ class ArgParser:
for methodname in atparse:
self.call_at_parse_list.append(methodname)
self.features_enabled.add(feat)
for feat_virt in provides_virtual:
self.features_enabled.add(feat_virt)
def add_argument(self, *args, **kwargs):
'''Add a custom argument directly to the standard library ArgParser object'''
return self.ap.add_argument(*args, **kwargs)
def add_argument_group(self, *args, **kwargs):
'''Add a custom argument group directly to the standard library ArgParser object'''
return self.ap.add_argument_group(*args, **kwargs)
self.ap.add_argument(*args, **kwargs)
def parse_args(self, process_data = True, *args, **kwargs):
self.args = self.ap.parse_args(*args, **kwargs)
if process_data:
for method in self.call_at_parse_list:
try:
getattr(self, method)()
except ArgumentProcessingError:
err = sys.exc_info()[1]
self.ap.error(str(err))
getattr(self, method)()
return self.args
def __getattr__(self, name):
@ -390,67 +90,42 @@ class ArgParser:
# Methods to initialise the related data structures:
def _eval_const_background_epsmu(self): # feature: const_real_background
self.args.background = self.args.refractive_index
self._eval_analytical_background_epsmugen()
def _eval_analytical_background_epsmugen(self): # feature: background_analytical
a = self.args
def _eval_background_epsmu(self): # feature: background
from .cymaterials import EpsMu
if isinstance(a.background, (float, complex)):
self.background_epsmu = EpsMu(a.background**2)
self.background_emg = self._add_emg(a.background)
self.background_epsmu = EpsMu(self.args.refractive_index**2)
def _eval_single_tmgen(self): # feature: single_particle
a = self.args
from .cymaterials import EpsMuGenerator, lorentz_drude
from .cytmatrices import TMatrixGenerator
self.foreground_emg = self._add_emg(a.material)
self.tmgen = self._add_tmg((a.background, a.material, (a.radius, a.height, a.lMax_extend)))
self.bspec = self._add_bspec(a.lMax)
if a.material in lorentz_drude.keys():
self.foreground_emg = EpsMuGenerator(lorentz_drude[a.material])
else:
try: lemat = float(a.material)
except ValueError:
try: lemat = complex(a.material)
except ValueError as ve:
raise ValueError("--material must be either a label such as 'Ag', 'Au', or a number") from ve
a.material = lemat
self.foreground_emg = EpsMuGenerator(EpsMu(a.material**2))
if a.height is None:
self.tmgen = TMatrixGenerator.sphere(self.background_epsmu, self.foreground_emg, a.radius)
else:
self.tmgen = TMatrixGenerator.cylinder(self.background_epsmu, self.foreground_emg, a.radius, a.height, lMax_extend = a.lMax_extend)
def _eval_single_omega(self): # feature: single_omega
from .constants import eV, hbar
self.omega = self.args.eV * eV / hbar
def _eval_omega_seq(self): # feature: omega_seq
import numpy as np
from .constants import eV, hbar
start, step, stop = self.args.eV_seq
self.omegas = np.arange(start, stop, step)
if self.args.eV:
self.omegas = np.concatenate((self.omegas, np.array(self.args.eV)))
self.omegas.sort()
self.omegas *= eV/hbar
def _eval_omega_seq_real_ng(self): # feature: omega_seq_real_ng
import numpy as np
from .constants import eV, hbar
eh = eV / hbar
self.omegas = [omega_eV * eh for omega_eV in flatten(self.args.eV)]
self.omega_max = max(om if isinstance(om, float) else max(om) for om in self.omegas)
self.omega_min = min(om if isinstance(om, float) else min(om) for om in self.omegas)
self.omega_singles = [om for om in self.omegas if isinstance(om, float)]
self.omega_ranges = [om for om in self.omegas if not isinstance(om, float)]
self.omega_descr = ("%geV" % (self.omega_max / eh)) if (self.omega_max == self.omega_min) else (
"%g%geV" % (self.omega_min / eh, self.omega_max / eh))
self.allomegas = []
for om in self.omegas:
if isinstance(om, float):
self.allomegas.append(om)
else:
self.allomegas.extend(om)
self.allomegas = np.unique(self.allomegas)
def _eval_lattice2d(self): # feature: lattice2d
l = len(self.args.basis_vectors)
if l != 2: raise ValueError('Two basis vectors must be specified (have %d)' % l)
from .qpms_c import lll_reduce
self.direct_basis = lll_reduce(self.args.basis_vectors, delta=1.)
import numpy as np
self.reciprocal_basis1 = np.linalg.inv(self.direct_basis.T)
self.reciprocal_basis2pi = 2 * np.pi * self.reciprocal_basis1
self.direct_basis = lll_reduce(self.args.basis_vector, delta=1.)
# import numpy as np
# self.reciprocal_basis1 = np.linalg.inv(self.direct_basis)
# self.reciprocal_basis2pi = 2 * np.pi * self.reciprocal_basis1
def _eval_rectlattice2d(self): # feature: rectlattice2d
a = self.args
@ -465,97 +140,4 @@ class ArgParser:
import numpy as np
a.basis_vectors = [(a.period[0], 0.), (0., a.period[1])]
self.direct_basis = np.array(a.basis_vectors)
self.reciprocal_basis1 = np.linalg.inv(self.direct_basis.T)
self.reciprocal_basis2pi = 2 * np.pi * self.reciprocal_basis1
def _process_planewave_angles(self): #feature: planewave
import math
pi2 = math.pi/2
a = self.args
a.chi = a.chi * pi2
a.psi = a.psi * pi2
a.theta = a.theta * pi2
a.phi = a.phi * pi2
def _process_multi_particle(self): # feature: multi_particle
a = self.args
self.tmspecs = {}
self.tmgens = {}
self.bspecs = {}
self.positions = {}
pos13, pos23, pos33 = False, False, False # used to
if len(a.position.keys()) == 0:
warnings.warn("No particle position (-p or +p) specified, assuming single particle in the origin / single particle per unit cell!")
a.position[None] = [(0.,0.,0.)]
for poslabel in a.position.keys():
try:
lMax = a.lMax.get(poslabel, False) or a.lMax[None]
radius = a.radius.get(poslabel, False) or a.radius[None]
# Height is "inherited" only together with radius
height = a.height.get(poslabel, None) if poslabel in a.radius.keys() else a.height.get(None, None)
if hasattr(a, 'lMax_extend'):
lMax_extend = a.lMax_extend.get(poslabel, False) or a.lMax_extend.get(None, False) or None
else:
lMax_extend = None
material = a.material.get(poslabel, False) or a.material[None]
except (TypeError, KeyError) as exc:
if poslabel is None:
raise ArgumentProcessingError("Unlabeled particles' positions (-p) specified, but some default particle properties are missing (--lMax, --radius, and --material have to be specified)") from exc
else:
raise ArgumentProcessingError(("Incomplete specification of '%s'-labeled particles: you must"
"provide at least ++lMax, ++radius, ++material arguments with the label, or the fallback arguments"
"--lMax, --radius, --material.")%(str(poslabel),)) from exc
tmspec = (a.background, material, (radius, height, lMax_extend))
self.tmspecs[poslabel] = tmspec
self.tmgens[poslabel] = self._add_tmg(tmspec)
self.bspecs[poslabel] = self._add_bspec(lMax)
poslist_cured = []
for pos in a.position[poslabel]:
if len(pos) == 1:
pos_cured = (0., 0., pos[0])
pos13 = True
elif len(pos) == 2:
pos_cured = (pos[0], pos[1], 0.)
pos23 = True
elif len(pos) == 3:
pos_cured = pos
pos33 = True
else:
raise argparse.ArgumentTypeError("Each -p / +p argument requires 1 to 3 cartesian coordinates")
poslist_cured.append(pos_cured)
self.positions[poslabel] = poslist_cured
if pos13 and pos23:
warnings.warn("Both 1D and 2D position specifications used. The former are interpreted as z coordinates while the latter as x, y coordinates")
def get_particles(self):
"""Creates a list of Particle instances that can be directly used in ScatteringSystem.create().
Assumes that self._process_multi_particle() has been already called.
"""
from .qpms_c import Particle
plist = []
for poslabel, poss in self.positions.items():
t = self.tmgens[poslabel]
bspec = self.bspecs[poslabel]
plist.extend([Particle(pos, t, bspec=bspec) for pos in poss])
return plist
#TODO perhaps move into another module
def annotate_pdf_metadata(pdfPages, scriptname=None, keywords=None, author=None, title=None, subject=None, **kwargs):
"""Adds QPMS version-related metadata to a matplotlib PdfPages object
Use before closing the PDF file.
"""
from .qpms_c import qpms_library_version
d = pdfPages.infodict()
d['Creator'] = "QPMS%s (lib rev. %s), https://qpms.necada.org" % (
"" if scriptname is None else (" "+scriptname), qpms_library_version())
if author is not None:
d['Author'] = author
if title is not None:
d['Title'] = title
if subject is not None:
d['Subject'] = subject
if keywords is not None:
d['Keywords'] = ' '.join(keywords)
d.update(kwargs)

View File

@ -7,7 +7,7 @@
#include <gsl/gsl_sf_bessel.h>
#include <complex.h>
#include "qpms_error.h"
#include <camos.h>
#include <amos.h>
#include <math.h>
#ifndef M_LN2
@ -52,11 +52,6 @@ static inline complex double spherical_yn(qpms_l_t l, complex double z) {
qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
int retval;
double tmparr[lmax+1];
if (typ != QPMS_BESSEL_REGULAR && x == 0) {
for (int l = 0; l <= lmax; ++l) result_array[l] = NAN + I*NAN;
QPMS_WARN("Evaluating singular Bessel functions at zero!");
return QPMS_SUCCESS; // Really?
}
switch(typ) {
case QPMS_BESSEL_REGULAR:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
@ -89,8 +84,7 @@ qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double
// TODO DOC
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex double x, complex double *res) {
if(!cimag(x) &&
creal(x) < 10000) // For large arguments (around 30000 or more), gsl_sf_bessel_jl_steed_array fails
if(!cimag(x))
return qpms_sph_bessel_realx_fill(typ, lmax, creal(x), res);
else if (isnan(creal(x)) || isnan(cimag(x)))
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = NAN + I*NAN;
@ -98,32 +92,30 @@ qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex doub
else if (fpclassify(creal(x)) == FP_INFINITE)
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
else {
try_again: ;
int retry_counter = 0;
const double zr = creal(x), zi = cimag(x), fnu = 0.5;
const int n = lmax + 1, kode = 1 /* No exponential scaling */;
double cyr[n], cyi[n];
int ierr, nz;
const DOUBLE_PRECISION_t zr = creal(x), zi = cimag(x), fnu = 0.5;
const INTEGER_t n = lmax + 1, kode = 1 /* No exponential scaling */;
DOUBLE_PRECISION_t cyr[n], cyi[n];
INTEGER_t ierr, nz;
unsigned int kindchar; // Only for error output
const complex double prefac = csqrt(M_PI_2/x);
switch(typ) {
case QPMS_BESSEL_REGULAR:
kindchar = 'j';
ierr = camos_zbesj(zr, zi, fnu, kode, n, cyr, cyi, &nz);
amos_zbesj(&zr, &zi, &fnu, &kode, &n, cyr, cyi, &nz, &ierr);
break;
case QPMS_BESSEL_SINGULAR:
kindchar = 'y';
{
double cwrkr[lmax + 1], cwrki[lmax + 1];
ierr = camos_zbesy(zr, zi, fnu, kode, n, cyr, cyi, &nz, cwrkr, cwrki);
DOUBLE_PRECISION_t cwrkr[lmax + 1], cwrki[lmax + 1];
amos_zbesy(&zr, &zi, &fnu, &kode, &n, cyr, cyi, &nz, cwrkr, cwrki, &ierr);
}
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
kindchar = 'h';
{
const int m = (typ == QPMS_HANKEL_PLUS) ? 1 : 2;
ierr = camos_zbesh(zr, zi, fnu, kode, m, n, cyr, cyi, &nz);
const INTEGER_t m = (typ == QPMS_HANKEL_PLUS) ? 1 : 2;
amos_zbesh(&zr, &zi, &fnu, &kode, &m, &n, cyr, cyi, &nz, &ierr);
}
break;
default:
@ -134,28 +126,14 @@ try_again: ;
for (qpms_l_t l = 0; l <= lmax; ++l)
res[l] = prefac * (cyr[l] + I * cyi[l]);
if (ierr == 3)
if (creal(x) >= 10000) {
QPMS_WARN_ONCE("Due to large argument, "
"Amos's zbes%c computation done but losses of significance "
"by argument reduction produce less than half of machine accuracy. "
"This warning is shown only once.",
kindchar);
} else {
QPMS_WARN("Amos's zbes%c computation done but losses of significance "
"by argument reduction produce less than half of machine accuracy.",
kindchar);
}
QPMS_WARN("Amos's zbes%c computation done but losses of significance "
"by argument reduction produce less than half of machine accuracy.",
kindchar);
return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
}
else {
if (retry_counter < 5) {
QPMS_WARN("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi). Retrying.\n",
kindchar, (int) ierr, lmax, creal(x), cimag(x));
++retry_counter;
goto try_again;
} else QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi).",
kindchar, (int) ierr, lmax, creal(x), cimag(x));
}
else
QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d.",
kindchar, (int) ierr);
}
return QPMS_SUCCESS;
}

65
qpms/bessels.c Normal file
View File

@ -0,0 +1,65 @@
#include "bessels.h"
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
static const double ln2 = 0.693147180559945309417;
// general; gives an array of size xxx with TODODESC
complex double * hankelcoefftable_init(size_t maxn) {
complex double *hct = malloc((maxn+1)*(maxn+2)/2 * sizeof(complex double));
for(size_t n = 0; n <= maxn; ++n) {
complex double *hcs = hankelcoeffs_get(hct,n);
for (size_t k = 0; k <= n; ++k) {
double lcoeff = lgamma(n+k+1) - lgamma(n-k+1) - lgamma(k+1) - k*ln2;
// for some reason, casting k-n to double does not work,so
// cpow (I, k-n-1) cannot be used...
complex double ifactor;
switch ((n+1-k) % 4) {
case 0:
ifactor = 1;
break;
case 1:
ifactor = -I;
break;
case 2:
ifactor = -1;
break;
case 3:
ifactor = I;
break;
default:
abort();
}
// the result should be integer, so round to remove inaccuracies
hcs[k] = round(exp(lcoeff)) * ifactor;
}
}
return hct;
}
void hankelparts_fill(complex double *lrt, complex double *srt, size_t maxn,
size_t lrk_cutoff, complex double const * const hct,
unsigned kappa, double c, double x) {
if (lrt) memset(lrt, 0, (maxn+1)*sizeof(complex double));
memset(srt, 0, (maxn+1)*sizeof(complex double));
double regularisator = pow(1. - exp(-c * x), (double) kappa);
double antiregularisator = 1. - regularisator;
double xfrac = 1.; // x ** (-1-k)
for (size_t k = 0; k <= maxn; ++k) {
xfrac /= x;
for(size_t n = k; n <= maxn; ++n) // TODO Kahan sums here
srt[n] += ((k<lrk_cutoff) ? antiregularisator : 1)
* xfrac * hankelcoeffs_get(hct,n)[k];
if (lrt && k < lrk_cutoff) for (size_t n = k; n <= maxn; ++n)
lrt[n] += regularisator * xfrac * hankelcoeffs_get(hct,n)[k];
}
complex double expix = cexp(I * x);
for(size_t n = 0; n <= maxn; ++n)
srt[n] *= expix;
if (lrt) for(size_t n = 0; n <= maxn; ++n)
srt[n] *= expix;
}

61
qpms/bessels.h Normal file
View File

@ -0,0 +1,61 @@
#ifndef BESSELS_H
#define BESSELS_H
/* Short- and long-range parts of spherical Hankel functions
* and (cylindrical) Hankel transforms of the long-range parts.
* Currently, the implementation lies in bessels.c and
* lrhankel_recspace_dirty.c. The latter contains the implementation
* of the Hankel transforms, but currenty only for a pretty limited
* set of parameters. The general implementation is a BIG TODO here.
*/
#include <stddef.h>
#include <complex.h>
complex double *hankelcoefftable_init(size_t maxn);
// For navigating in the coefficients, maybe not for public use
static inline complex double *
trindex_cd(complex double const * const arr, size_t n){
return (complex double *)(arr + n*(n+1)/2);
}
// general, gives the offset such that result[ql] is
// the coefficient corresponding to the e**(I * x) * x**(-ql-1)
// term of the n-th Hankel function; no boundary checks!
static inline complex double *
hankelcoeffs_get(complex double const * const hankelcoefftable, size_t n){
return trindex_cd(hankelcoefftable, n);
}
/* Compute the untransformed long- (optional) and short-range parts of spherical Hankel functions */
// general; target_longrange and target_shortrange are of size (maxn+1)
// if target_longrange is NULL, only the short-range part is calculated
void hankelparts_fill(complex double *target_longrange, /* Not needed for the actual calculations
(only for testing and error estimates)
as summed in the reciprocal space:
pass NULL to omit */
complex double *target_shortrange,
size_t maxn, size_t longrange_order_cutoff, /* terms e**(I x)/x**(k+1),
k>= longrange_order_cutoff go
completely to short-range part */
complex double const * const hankelcoefftable,
unsigned kappa, double c, /* regularisation "slope", dimensionless */
double x); // dimensionless x = k0 * r
/* Hankel transforms of the long-range parts of the spherical Hankel functions */
// this declaration is general; however, the implementation
// is so far only for kappa == 5, maxp <= 5, longrange_order_cutoff <= 1
void lrhankel_recpart_fill(complex double *target_longrange_kspace /*Must be of size maxn*(maxn+1)/2*/,
size_t maxp /* Max. order of the Hankel transform */,
size_t longrange_order_cutoff /* terms e**(I x)/x**(k+1), k>= longrange_order_cutoff go
completely to the shortrange part
index with hankelcoeffs_get(target,p)l[delta_m] */,
complex double const * const hankelcoefftable,
unsigned kappa,
// These are dimensionFUL (inverse lengths):
double cv, double k0, double k);
#endif //BESSELS_H

Some files were not shown because too many files have changed in this diff Show More