qpms/notes/ewald.tex

599 lines
28 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%% LyX 2.1.2 created this file. For more info, see http://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[10pt,english]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{fontspec}
\usepackage{unicode-math}
\setmainfont[Mapping=tex-text,Numbers=OldStyle]{TeX Gyre Pagella}
\usepackage[a5paper]{geometry}
\geometry{verbose,tmargin=2cm,bmargin=2cm,lmargin=1cm,rmargin=1cm}
\usepackage{array}
\usepackage{multirow}
\usepackage{esint}
\usepackage[unicode=true,
bookmarks=true,bookmarksnumbered=false,bookmarksopen=false,
breaklinks=false,pdfborder={0 0 1},backref=false,colorlinks=false]
{hyperref}
\hypersetup{pdftitle={Accelerating lattice mode calculations with T-matrix method},
pdfauthor={Marek Nečada}}
\makeatletter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
\newcommand{\lyxmathsym}[1]{\ifmmode\begingroup\def\b@ld{bold}
\text{\ifx\math@version\b@ld\bfseries\fi#1}\endgroup\else#1\fi}
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usepackage{unicode-math}
% Toto je trik, jimž se z fontspec získá familyname pro následující
\ExplSyntaxOn
\DeclareExpandableDocumentCommand{\getfamilyname}{m}
{
\use:c { g__fontspec_ \cs_to_str:N #1 _family }
}
\ExplSyntaxOff
% definujeme novou rodinu, jež se volá pomocí \MyCyr pro běžné použití, avšak pro účely \DeclareSymbolFont je nutno získat název pomocí getfamilyname definovaného výše
\newfontfamily\MyCyr{CMU Serif}
\DeclareSymbolFont{cyritletters}{EU1}{\getfamilyname\MyCyr}{m}{it}
\newcommand{\makecyrmathletter}[1]{%
\begingroup\lccode`a=#1\lowercase{\endgroup
\Umathcode`a}="0 \csname symcyritletters\endcsname\space #1
}
\count255="409
\loop\ifnum\count255<"44F
\advance\count255 by 1
\makecyrmathletter{\count255}
\repeat
\renewcommand{\lyxmathsym}[1]{#1}
\usepackage{polyglossia}
\setmainlanguage{english}
\setotherlanguage{russian}
\newfontfamily\russianfont[Script=Cyrillic]{URW Palladio L}
%\newfontfamily\russianfont[Script=Cyrillic]{DejaVu Sans}
\makeatother
\usepackage{xunicode}
\usepackage{polyglossia}
\setdefaultlanguage{english}
\begin{document}
\global\long\def\uoft#1{\mathfrak{F}#1}
\global\long\def\uaft#1{\mathfrak{\mathbb{F}}#1}
\global\long\def\usht#1#2{\mathbb{S}_{#1}#2}
\global\long\def\bsht#1#2{\mathrm{S}_{#1}#2}
\global\long\def\pht#1#2{\mathfrak{\mathbb{H}}_{#1}#2}
\global\long\def\vect#1{\mathbf{#1}}
\global\long\def\ud{\mathrm{d}}
\global\long\def\basis#1{\mathfrak{#1}}
\global\long\def\dc#1{\lyxmathsym{Ш}_{#1}}
\global\long\def\rec#1{#1^{-1}}
\global\long\def\recb#1{#1^{\widehat{-1}}}
\global\long\def\ints{\mathbb{Z}}
\global\long\def\nats{\mathbb{N}}
\global\long\def\reals{\mathbb{R}}
\global\long\def\ush#1#2{Y_{#1,#2}}
\global\long\def\hgfr{\mathbf{F}}
\global\long\def\hgf{F}
\global\long\def\ph{\mathrm{ph}}
\global\long\def\kor#1{\underline{#1}}
\global\long\def\koru#1{\utilde{#1}}
\title{Accelerating lattice mode calculations with $T$-matrix method}
\author{Marek Nečada}
\maketitle
\begin{abstract}
The $T$-matrix approach is the method of choice for simulating optical
response of a reasonably small system of compact linear scatterers
on isotropic background. However, its direct utilisation for problems
with infinite lattices is problematic due to slowly converging sums
over the lattice. Here I develop a way to compute the problematic
sums in the reciprocal space, making the $T$-matrix method very suitable
for infinite periodic systems as well.
\end{abstract}
\section{Formulation of the problem}
Assume a system of compact EM scatterers in otherwise homogeneous
and isotropic medium, and assume that the system, i.e. both the medium
and the scatterers, have linear response. A scattering problem in
such system can be written as
\[
A_{\alpha}=T_{\alpha}P_{\alpha}=T_{\alpha}(\sum_{\beta}S_{\alpha\leftarrow\beta}A_{\beta}+P_{0\alpha})
\]
where $T_{\alpha}$ is the $T$-matrix for scatterer α, $A_{\alpha}$
is its vector of the scattered wave expansion coefficient (the multipole
indices are not explicitely indicated here) and $P_{\alpha}$ is the
local expansion of the incoming sources. $S_{\alpha\leftarrow\beta}$
is ... and ... is ...
...
\[
\sum_{\beta}(\delta_{\alpha\beta}-T_{\alpha}S_{\alpha\leftarrow\beta})A_{\beta}=T_{\alpha}P_{0\alpha}.
\]
Now suppose that the scatterers constitute an infinite lattice
\[
\sum_{\vect b\beta}(\delta_{\vect{ab}}\delta_{\alpha\beta}-T_{\vect a\alpha}S_{\vect a\alpha\leftarrow\vect b\beta})A_{\vect b\beta}=T_{\vect a\alpha}P_{0\vect a\alpha}.
\]
Due to the periodicity, we can write $S_{\vect a\alpha\leftarrow\vect b\beta}=S_{\alpha\leftarrow\beta}(\vect b-\vect a)$
and $T_{\vect a\alpha}=T_{\alpha}$. In order to find lattice modes,
we search for solutions with zero RHS
\[
\sum_{\vect b\beta}(\delta_{\vect{ab}}\delta_{\alpha\beta}-T_{\alpha}S_{\vect a\alpha\leftarrow\vect b\beta})A_{\vect b\beta}=0
\]
and we assume periodic solution $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$,
yielding
\begin{eqnarray*}
\sum_{\vect b\beta}(\delta_{\vect{ab}}\delta_{\alpha\beta}-T_{\alpha}S_{\vect a\alpha\leftarrow\vect b\beta})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
\sum_{\vect b\beta}(\delta_{\vect{0b}}\delta_{\alpha\beta}-T_{\alpha}S_{\vect 0\alpha\leftarrow\vect b\beta})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
\sum_{\beta}(\delta_{\alpha\beta}-T_{\alpha}\underbrace{\sum_{\vect b}S_{\vect 0\alpha\leftarrow\vect b\beta}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
A_{\vect 0\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
\end{eqnarray*}
Therefore, in order to solve the modes, we need to compute the ``lattice
Fourier transform'' of the translation operator,
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0\alpha\leftarrow\vect b\beta}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
\end{equation}
\section{Computing the Fourier sum of the translation operator}
The problem evaluating (\ref{eq:W definition}) is the asymptotic
behaviour of the translation operator, $S_{\vect 0\alpha\leftarrow\vect b\beta}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
that makes the convergence of the sum quite problematic for any $d>1$-dimensional
lattice.%
\footnote{Note that $d$ here is dimensionality of the lattice, not the space
it lies in, which I for certain reasons assume to be three. (TODO
few notes on integration and reciprocal lattices in some appendix)%
} In electrostatics, one can solve this problem with Ewald summation.
Its basic idea is that if what asymptoticaly decays poorly in the
direct space, will perhaps decay fast in the Fourier space. I use
the same idea here, but everything will be somehow harder than in
electrostatics.
Let us re-express the sum in (\ref{eq:W definition}) in terms of
integral with a delta comb
\begin{equation}
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
\end{equation}
The translation operator $S$ is now a function defined in the whole
3d space; $\vect r_{\alpha},\vect r_{\beta}$ are the displacements
of scatterers $\alpha$ and $\beta$ in a unit cell. The arrow notation
$S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$ means ``translation
operator for spherical waves originating in $\vect r+\vect r_{\beta}$
evaluated in $\vect r_{\alpha}$'' and obviously $S$ is in fact
a function of a single 3d argument, $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$.
Expression (\ref{eq:W integral}) can be rewritten as
\[
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
\]
where changed the sign of $\vect r/\vect{\bullet}$ has been swapped
under integration, utilising evenness of $\dc{\basis u}$. Fourier
transform of product is convolution of Fourier transforms, so (using
formula (\ref{eq:Dirac comb uaFt}) for the Fourier transform of Dirac
comb)
\begin{eqnarray}
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right).\label{eq:W sum in reciprocal space}
\end{eqnarray}
As such, this is not extremely helpful because the the \emph{whole}
translation operator $S$ has singularities in origin, hence its Fourier
transform $\uaft S$ will decay poorly.
However, Fourier transform is linear, so we can in principle separate
$S$ in two parts, $S=S^{\textup{L}}+S^{\textup{S}}$. $S^{\textup{S}}$
is a short-range part that decays sufficiently fast with distance
so that its direct-space lattice sum converges well; $S^{\textup{S}}$
must as well contain all the singularities of $S$ in the origin.
The other part, $S^{\textup{L}}$, will retain all the slowly decaying
terms of $S$ but it also has to be smooth enough in the origin, so
that its Fourier transform $\uaft{S^{\textup{L}}}$ decays fast enough.
(The same idea lies behind the Ewald summation in electrostatics.)
Using the linearity of Fourier transform and formulae (\ref{eq:W definition})
and (\ref{eq:W sum in reciprocal space}), the operator $W_{\alpha\beta}$
can then be re-expressed as
\begin{eqnarray}
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
\end{eqnarray}
where both sums should converge nicely.
\section{Finding a good decomposition}
The remaining challenge is therefore finding a suitable decomposition
$S^{\textup{L}}+S^{\textup{S}}$ such that both $S^{\textup{S}}$
and $\uaft{S^{\textup{L}}}$ decay fast enough with distance and are
expressable analytically. With these requirements, I do not expect
to find gaussian asymptotics as in the electrostatic Ewald formula—having
$\sim x^{-t}$, $t>d$ asymptotics would be nice, making the sums
in (\ref{eq:W Short definition}), (\ref{eq:W Long definition}) absolutely
convergent.
The translation operator $S$ for compact scatterers in 3d can be
expressed as
\[
S_{l',m',t'\leftarrow l,m,t}\left(\vect r\leftarrow\vect 0\right)=\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect r},\phi_{\vect r}\right)z_{p}^{(J)}\left(k_{0}\left|\vect r\right|\right)
\]
where $Y_{l,m}\left(\theta,\phi\right)$ are the spherical harmonics,
$z_{p}^{(J)}\left(r\right)$ some of the Bessel or Hankel functions
(probably $h_{p}^{(1)}$ in all meaningful cases; TODO) and $c_{p}^{l,m,t\leftarrow l',m',t'}$
are some ugly but known coefficients (REF Xu 1996, eqs. 76,77).
The spherical Hankel functions can be expressed analytically as (REF
DLMF 10.49.6, 10.49.1)
\begin{equation}
h_{n}^{(1)}(r)=e^{ir}\sum_{k=0}^{n}\frac{i^{k-n-1}}{r^{k+1}}\frac{\left(n+k\right)!}{2^{k}k!\left(n-k\right)!},\label{eq:spherical Hankel function series}
\end{equation}
so if we find a way to deal with the radial functions $s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$,
$q=1,2$ in 2d case or $q=1,2,3$ in 3d case, we get absolutely convergent
summations in the direct space.
\subsection{2d}
Assume that all scatterers are placed in the plane $\vect z=0$, so
that the 2d Fourier transform of the long-range part of the translation
operator in terms of Hankel transforms, according to (\ref{eq:Fourier v. Hankel tf 2d}),
reads
\begin{multline*}
\uaft{S_{l',m',t'\leftarrow l,m,t}^{\textup{L}}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\frac{\pi}{2},0\right)e^{i(m'-m)\phi}i^{m'-m}\pht{m'-m}{h_{p}^{(1)\textup{L}}\left(k_{0}\vect{\bullet}\right)}\left(\left|\vect k\right|\right)
\end{multline*}
Here $h_{p}^{(1)\textup{L}}=h_{p}^{(1)}-h_{p}^{(1)\textup{S}}$ is
a long range part of a given spherical Hankel function which has to
be found and which contains all the terms with far-field ($r\to\infty$)
asymptotics proportional to$\sim e^{ik_{0}r}\left(k_{0}r\right)^{-q}$,
$q\le Q$ where $Q$ is at least two in order to achieve absolute
convergence of the direct-space sum, but might be higher in order
to speed the convergence up.
Obviously, all the terms $\propto s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$,
$q>Q$ of the spherical Hankel function (\ref{eq:spherical Hankel function series})
can be kept untouched as part of $h_{p}^{(1)\textup{S}}$, as they
decay fast enough.
The remaining task is therefore to find a suitable decomposition of
$s_{k_{0},q}(r)=e^{ik_{0}r}\left(k_{0}r\right)^{-q}$, $q\le Q$ into
short-range and long-range parts, $s_{k_{0},q}(r)=s_{k_{0},q}^{\textup{S}}(r)+s_{k_{0},q}^{\textup{L}}(r)$,
such that $s_{k_{0},q}^{\textup{L}}(r)$ contains all the slowly decaying
asymptotics and its Hankel transforms decay desirably fast as well,
$\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=o(z^{-Q})$, $z\to\infty$.
The latter requirement calls for suitable regularisation functions—$s_{q}^{\textup{L}}$
must be sufficiently smooth in the origin, so that
\begin{equation}
\pht n{s_{k_{0},q}^{\textup{L}}}\left(k\right)=\int_{0}^{\infty}s_{k_{0},q}^{\textup{L}}\left(r\right)rJ_{n}\left(kr\right)\ud r=\int_{0}^{\infty}s_{k_{0},q}\left(r\right)\rho\left(r\right)rJ_{n}\left(kr\right)\ud r\label{eq:2d long range regularisation problem statement}
\end{equation}
exists and decays fast enough. $J_{\nu}(r)\sim\left(r/2\right)^{\nu}/\Gamma\left(\nu+1\right)$
(REF DLMF 10.7.3) near the origin, so the regularisation function
should be $\rho(r)=o(r^{q-n-1})$ only to make $\pht n{s_{q}^{\textup{L}}}$
converge. The additional decay speed requirement calls for at least
$\rho(r)=o(r^{q-n+Q-1})$, I guess. At the same time, $\rho(r)$ must
converge fast enough to one for $r\to\infty$.
The electrostatic Ewald summation uses regularisation with $1-e^{-cr^{2}}$.
However, such choice does not seem to lead to an analytical solution
(really? could not something be dug out of DLMF 10.22.54?) for the
current problem (\ref{eq:2d long range regularisation problem statement}).
But it turns out that the family of functions
\begin{equation}
\rho_{\kappa,c}(r)\equiv\left(1-e^{-cr}\right)^{\text{\ensuremath{\kappa}}},\quad c>0,\kappa\in\nats\label{eq:binom regularisation function}
\end{equation}
might lead to satisfactory results; see below.
\subsubsection{Hankel transforms of the long-range parts, „binomial“ regularisation\label{sub:Hankel-transforms-binom-reg}}
Let
\begin{eqnarray}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & \equiv & \int_{0}^{\infty}\frac{e^{ik_{0}r}}{\left(k_{0}r\right)^{q}}J_{n}\left(kr\right)\left(1-e^{-cr}\right)^{\kappa}r\,\ud r\nonumber \\
& = & k_{0}^{-q}\int_{0}^{\infty}r^{1-q}J_{n}\left(kr\right)\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}e^{-(\sigma c-ik_{0})r}\ud r\nonumber \\
& \underset{\equiv}{\textup{form.}} & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\pht n{s_{q,k_{0}}^{\textup{L}1,\sigma c}}\left(k\right).\label{eq:2D Hankel transform of regularized outgoing wave, decomposition}
\end{eqnarray}
From {[}REF DLMF 10.22.49{]} one digs
\begin{multline}
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}\Gamma\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right),\\
\Re\left(2-q+n\right)>0,\Re(c-ik_{0}\pm k)\ge0,\label{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1}
\end{multline}
and using {[}REF DLMF 15.9.17{]} and {[}REF DLMF 14.9.5{]}
{\footnotesize{}
\begin{multline}
\pht n{s_{q,k_{0}}^{\textup{L}1,c}}\left(k\right)=\frac{k^{n}\Gamma\left(2-q+n\right)}{k_{0}^{q}\left(c-ik_{0}\right)^{2-q+n}}\left(\frac{-k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{-\frac{n}{2}}\left(1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}\right)^{\frac{q}{2}-1}P_{q}^{-n}\left(\frac{1}{\sqrt{1+\frac{k^{2}}{\left(c-ik_{0}\right)^{2}}}}\right),\\
k>0\wedge k_{0}>0\wedge c\ge0\wedge\lnot\left(c=0\wedge k_{0}=k\right)\label{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded}
\end{multline}
}with principal branches of the hypergeometric functions, associated
Legendre functions, and fractional powers. The conditions from (\ref{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1})
should hold, but we will use (\ref{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded})
formally even if they are violated, with the hope that the divergences
eventually cancel in (\ref{eq:2D Hankel transform of regularized outgoing wave, decomposition}).
One problematic element here is the gamma function $\text{Γ}\left(2-q+n\right)$
which is singular if the arguments are negative integers, i.e. if
$q-n\ge3$; but at least the necessary minimum of $q=1,2$ would be
covered this way. The associated Legendre function can be expressed
as a finite ``polynomial'' if $q\ge n$. In other cases, different
expressions can be obtained from \ref{eq:2D Hankel transform of exponentially suppressed outgoing wave as 2F1}
using various transformation formulae from either DLMF or \begin{russian}Прудников\end{russian}.
In fact, Mathematica is usually able to calculate the transforms for
specific values of $\kappa,q,n$, but it did not find any general
formula for me. The resulting expressions are finite sums of algebraic
functions, Table \ref{tab:Asymptotical-behaviour-Mathematica} shows
how fast they decay with growing $k$ for some parameters. The only
case where Mathematica did not help at all is $q=2,n=0$, which is
unfortunately important. But if I have not made some mistake, the
expression (\ref{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded})
is applicable for this case.
\begin{table}
\begin{centering}
{\footnotesize{}}%
\begin{tabular}{cc|ccc}
\multicolumn{2}{c|}{{\footnotesize{}$\kappa=0$}} & & {\footnotesize{}$n$} & \tabularnewline
\multicolumn{1}{c}{} & & {\footnotesize{}0} & {\footnotesize{}1} & {\footnotesize{}2}\tabularnewline
\hline
\multirow{2}{*}{{\footnotesize{}$q$}} & {\footnotesize{}1} & {\footnotesize{}2} & {\footnotesize{}1} & {\footnotesize{}1}\tabularnewline
& {\footnotesize{}2} & {\footnotesize{}x} & {\footnotesize{}w} & {\footnotesize{}0}\tabularnewline
\end{tabular}{\footnotesize{} \hspace*{\fill}}%
\begin{tabular}{cc|ccccc}
\multicolumn{2}{c|}{{\footnotesize{}$\kappa=1$}} & \multicolumn{5}{c}{{\footnotesize{}$n$}}\tabularnewline
& & {\footnotesize{}0} & {\footnotesize{}1} & {\footnotesize{}2} & {\footnotesize{}3} & {\footnotesize{}4}\tabularnewline
\hline
\multirow{2}{*}{{\footnotesize{}$q$}} & {\footnotesize{}1} & {\footnotesize{}w} & {\footnotesize{}3} & {\footnotesize{}2} & {\footnotesize{}2} & {\footnotesize{}2}\tabularnewline
& {\footnotesize{}2} & {\footnotesize{}x} & {\footnotesize{}1} & {\footnotesize{}w} & {\footnotesize{}1} & {\footnotesize{}1}\tabularnewline
\end{tabular}{\footnotesize{} \hspace*{\fill}}%
\begin{tabular}{cc|ccccc}
\multicolumn{2}{c|}{{\footnotesize{}$\kappa=2$}} & \multicolumn{5}{c}{{\footnotesize{}$n$}}\tabularnewline
& & {\footnotesize{}0} & {\footnotesize{}1} & {\footnotesize{}2} & {\footnotesize{}3} & {\footnotesize{}4}\tabularnewline
\hline
\multirow{2}{*}{{\footnotesize{}$q$}} & {\footnotesize{}1} & {\footnotesize{}0/w} & {\footnotesize{}3} & {\footnotesize{}4} & {\footnotesize{}3} & {\footnotesize{}3}\tabularnewline
& {\footnotesize{}2} & {\footnotesize{}x} & {\footnotesize{}3} & {\footnotesize{}2} & {\footnotesize{}2} & {\footnotesize{}1}\tabularnewline
\end{tabular}
\par\end{centering}{\footnotesize \par}
\protect\caption{Asymptotical behaviour of some (\ref{eq:2D Hankel transform of regularized outgoing wave, decomposition})
obtained by Mathematica for $k\to\infty$. The table entries are the
$N$ of $\protect\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right)=o\left(1/k^{N}\right)$.
The special entry ``x'' means that Mathematica was not able to calculate
the integral, and ``w'' denotes that the first returned term was
not simply of the kind $(\ldots)k^{-N-1}$.\label{tab:Asymptotical-behaviour-Mathematica}}
\end{table}
\subsection{3d (TODO)}
\begin{multline*}
\uaft{S_{l',m',t'\leftarrow l,m,t}\left(\vect{\bullet}\leftarrow\vect 0\right)}(\vect k)=\\
\sum_{p}c_{p}^{l',m',t'\leftarrow l,m,t}\ush p{m'-m}\left(\theta_{\vect k},\phi_{\vect k}\right)\left(-i\right)^{p}\usht p{z_{p}^{(J)}}\left(\left|\vect k\right|\right)
\end{multline*}
\section{Major TODOs and open questions}
\begin{itemize}
\item Check if (\ref{eq:2D Hankel transform of exponentially suppressed outgoing wave expanded})
gives a satisfactory result for the case $q=2,n=0$.
\item Analyse the behaviour $k\to k_{0}$.
\item Find a general algorithm for generating the expressions of the Hankel
transforms.
\item Three-dimensional case.
\end{itemize}
\section{(Appendix) Fourier vs. Hankel transform}
\subsection{Three dimensions}
Given a nice enough function $f$ of a real 3d variable, assume its
factorisation into radial and angular parts
\[
f(\vect r)=\sum_{l,m}f_{l,m}(\left|\vect r\right|)\ush lm\left(\theta_{\vect r},\phi_{\vect r}\right).
\]
Acording to (REF Baddour 2010, eqs. 13, 16), its Fourier transform
can then be expressed in terms of Hankel transforms (CHECK normalisation
of $j_{n}$, REF Baddour (1))
\[
\uaft f(\vect k)=\frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sum_{l,m}\left(-i\right)^{l}\left(\bsht{f_{l,m}}{}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)
\]
where the spherical Hankel transform $\bsht l{}$ of degree $l$ is
defined as (REF Baddour eq. 2)
\[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
\]
Using this convention, the inverse spherical Hankel transform is given
by (REF Baddour eq. 3)
\[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
\]
so it is not unitary.
An unitary convention would look like this:
\begin{equation}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\end{equation}
Then $\usht l{}^{-1}=\usht l{}$ and the unitary, angular-momentum
Fourier transform reads
\begin{eqnarray}
\uaft f(\vect k) & = & \frac{4\pi}{\left(2\pi\right)^{\frac{3}{2}}}\sqrt{\frac{\pi}{2}}\sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right)\nonumber \\
& = & \sum_{l,m}\left(-i\right)^{l}\left(\usht l{f_{l,m}}\right)\left(\left|\vect k\right|\right)\ush lm\left(\theta_{\vect k},\phi_{\vect k}\right).\label{eq:Fourier v. Hankel tf 3d}
\end{eqnarray}
Cool.
\subsection{Two dimensions}
Similarly in 2d, let the expansion of $f$ be
\[
f\left(\vect r\right)=\sum_{m}f_{m}\left(\left|\vect r\right|\right)e^{im\phi_{\vect r}},
\]
its Fourier transform is then (CHECK this, it is taken from the Wikipedia
article on Hankel transform)
\begin{equation}
\uaft f\left(\vect k\right)=\sum_{m}i^{m}e^{im\phi_{\vect k}}\pht mf_{m}\left(\left|\vect k\right|\right)\label{eq:Fourier v. Hankel tf 2d}
\end{equation}
where the Hankel transform of order $m$ is defined as
\begin{equation}
\pht mg\left(k\right)=\int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}
\end{equation}
which is already self-inverse, $\pht m{}^{-1}=\pht m{}$ (hence also
unitary).
\section{(Appendix) Multidimensional Dirac comb}
\subsection{1D}
This is all from Wikipedia
\subsubsection{Definitions}
\begin{eqnarray*}
\lyxmathsym{Ш}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-k)\\
\lyxmathsym{Ш}_{T}(t) & \equiv & \sum_{k=-\infty}^{\infty}\delta(t-kT)=\frac{1}{T}\lyxmathsym{Ш}\left(\frac{t}{T}\right)
\end{eqnarray*}
\subsubsection{Fourier series representation}
\begin{equation}
\lyxmathsym{Ш}_{T}(t)=\sum_{n=-\infty}^{\infty}e^{2\pi int/T}\label{eq:1D Dirac comb Fourier series}
\end{equation}
\subsubsection{Fourier transform}
With unitary ordinary frequency Ft., i.e.
\[
\uoft f(\vect{\xi})\equiv\int_{\mathbb{R}^{n}}f(\vect x)e^{-2\pi i\vect x\cdot\vect{\xi}}\ud^{n}\vect x
\]
we have
\begin{equation}
\uoft{\lyxmathsym{Ш}_{T}}(f)=\frac{1}{T}\lyxmathsym{Ш}_{\frac{1}{T}}(f)=\sum_{n=-\infty}^{\infty}e^{-i2\pi fnT}\label{eq:1D Dirac comb Ft ordinary freq}
\end{equation}
and with unitary angular frequency Ft., i.e.
\begin{equation}
\uaft f(\vect k)\equiv\frac{1}{\left(2\pi\right)^{n/2}}\int_{\mathbb{R}^{n}}f(\vect x)e^{-i\vect x\cdot\vect k}\ud^{n}\vect x\label{eq:Ft unitary angular frequency}
\end{equation}
we have (CHECK)
\[
\uaft{\lyxmathsym{Ш}_{T}}(\omega)=\frac{\sqrt{2\pi}}{T}\lyxmathsym{Ш}_{\frac{2\pi}{T}}(\omega)=\frac{1}{\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-i\omega nT}
\]
\subsection{Dirac comb for multidimensional lattices}
\subsubsection{Definitions}
Let $d$ be the dimensionality of the real vector space in question,
and let $\basis u\equiv\left\{ \vect u_{i}\right\} _{i=1}^{d}$ denote
a basis for some lattice in that space. Let the corresponding lattice
delta comb be
\[
\dc{\basis u}\left(\vect x\right)\equiv\sum_{n_{1}=-\infty}^{\infty}\ldots\sum_{n_{d}=-\infty}^{\infty}\delta\left(\vect x-\sum_{i=1}^{d}n_{i}\vect u_{i}\right).
\]
Furthemore, let $\rec{\basis u}\equiv\left\{ \rec{\vect u}_{i}\right\} _{i=1}^{d}$
be the reciprocal lattice basis, that is the basis satisfying $\vect u_{i}\cdot\rec{\vect u_{j}}=\delta_{ij}$.
This slightly differs from the usual definition of a reciprocal basis,
here denoted $\recb{\basis u}\equiv\left\{ \recb{\vect u_{i}}\right\} _{i=1}^{d}$,
which satisfies $\vect u_{i}\cdot\recb{\vect u_{j}}=2\pi\delta_{ij}$
instead.
\subsubsection{Factorisation of a multidimensional lattice delta comb}
By simple drawing, it can be seen that
\[
\dc{\basis u}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\dc{}\left(\vect x\cdot\rec{\vect u_{i}}\right)
\]
where $c_{\basis u}$ is some numerical volume factor. In order to
determine $c_{\basis u}$, let us consider only the ``zero tooth''
of the comb, leading to
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\delta\left(\vect x\cdot\rec{\vect u_{i}}\right).
\]
From the scaling property of delta function, $\delta(ax)=\left|a\right|^{-1}\delta(x)$,
we get
\[
\delta^{d}(\vect x)=c_{\basis u}\prod_{i=1}^{d}\left\Vert \rec{\vect u_{i}}\right\Vert ^{-1}\delta\left(\vect x\cdot\frac{\rec{\vect u_{i}}}{\left\Vert \rec{\vect u_{i}}\right\Vert }\right).
\]
From the Osgood's book (p. 375):
\[
\dc A(\vect x)=\frac{1}{\left|\det A\right|}\dc{}^{(d)}\left(A^{-1}\vect x\right)
\]
\subsubsection{Fourier series representation}
\subsubsection{Fourier transform (OK)}
From the Osgood's book https://see.stanford.edu/materials/lsoftaee261/chap8.pdf,
p. 379
\[
\uoft{\dc{\basis u}}\left(\vect{\xi}\right)=\left|\det\rec{\basis u}\right|\dc{\rec{\basis u}}^{(d)}\left(\vect{\xi}\right).
\]
And consequently, for unitary/angular frequency it is
\begin{eqnarray}
\uaft{\dc{\basis u}}\left(\vect k\right) & = & \frac{1}{\left(2\pi\right)^{\frac{d}{2}}}\uoft{\dc{\basis u}}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\rec{\basis u}}^{(d)}\left(\frac{\vect k}{2\pi}\right)\nonumber \\
& = & \left(2\pi\right)^{\frac{d}{2}}\left|\det\rec{\basis u}\right|\dc{\recb{\basis u}}\left(\vect k\right)\nonumber \\
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\dc{\recb{\basis u}}\left(\vect k\right).\label{eq:Dirac comb uaFt}
\end{eqnarray}
\subsubsection{Convolution}
\[
\left(f\ast\dc{\basis u}\right)(\vect x)=\sum_{\vect t\in\basis u\ints^{d}}f(\vect x-\vect t)
\]
\end{document}