qpms/notes/conventions.md

3.9 KiB
Raw Blame History

VSWF conventions

Source VSWF definition E/M interrelations VSWF norm CS Phase Field expansion Radiated power Notes
Kristensson I \cite kristensson_spherical_2014 \f[ \wfkcreg, \wfkcout= \dots \f] \f[
\wfkcreg_{1lm} = \frac{1}{k}\nabla\times\wfkcreg_{2lm}, \
\wfkcreg_{2lm} = \frac{1}{k}\nabla\times\wfkcreg_{1lm},
\f] and analogously for outgoing waves \f$ \wfkcout \f$, eq. (2.8) onwards. Yes, in the spherical harmonics definition, cf. sect. D.2. \f[
\vect E = k \sqrt{\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\
\vect H = \frac{k \sqrt{\eta_0\eta}}{i\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right),
\f] but for plane wave expansion \cite kristensson_spherical_2014 sect. 2.5 K. uses a different definition (same as in Kristensson II). \f[
P = \frac{1}{2} \sum_n \left( \abs{\wckcout_n}^2 +\Re \left(\wckcout_n\wckcreg_n^{*}\right)\right)
\f] The \f$ \wckcreg, \wckcout \f$ coefficients have dimension \f$ \sqrt{\mathrm{W}} \f$.
Kristensson II \cite kristensson_scattering_2016 \f[ \wfkrreg, \wfkrout= \dots \f] \f[
\nabla\times\wfkrreg_{\tau n} = k\wfkrreg_{\overline{\tau} n},
\f] eq. (7.7) and analogously for outgoing waves \f$ \wfkrout \f$. \f[
\vect E = \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right),
\
\vect H = \frac{1}{i\eta_0\eta} \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right)
\f] \f[
P = \frac{1}{2k^2\eta_0\eta} \sum_n \left( \abs{\wckrout_n}^2 +\Re \left(\wckrout_n\wckrreg_n^{*}\right)\right)
\f] The \f$ \wckrreg, \wckrout \f$ coefficients have dimension \f$ \mathrm{V/m} \f$.
Reid \cite reid_electromagnetism_2016 \f[
\nabla\times\wfr_{lmM} = -ik\wfr_{lmN}, \ \nabla\times\wfr_{lmN} = +ik\wfr_{lmM}.
\f] \f[
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha \wfrout_\alpha }, \
\vect H = \frac{1}{Z_0Z^r} \sum_\alpha \pr{ \wcrreg_\alpha \sigma_\alpha\wfrreg_\overline{\alpha} +
\wcrout_\alpha \sigma_\alpha\wfrout_\overline{\alpha}},
\f] where \f$ \sigma_{lmM} = +1, \sigma_{lmN}=-1, \overline{lmM}=lmM, \overline{lmN}=lmM, \f$ cf. eq. (6). The notation is not extremely consistent throughout Reid's memo.
Taylor \cite taylor_optical_2011 \f[
\wfet_{mn}^{(j)} = \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\uvec{r} \
+\left[\tilde{\tau}{mn}\left(\cos\theta\right)\uvec{\theta}+i\tilde{\pi}{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}, \
\wfmt_{mn}^{(j)} = \left[i\tilde{\pi}{mn}\left(\cos\theta\right)\uvec{\theta}-\tilde{\tau}{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
\f] \f[
\int_{S(kr)} \wfmt_{mn}^{(j)} \wfmt_{m'n'}^{(j)},\ud S = n(n+1) \abs{z_n^{(j)}}^2 \delta_{m,m'}\delta_{n,n'} ,\
\int_{S(kr)} \wfet_{mn}^{(j)} \wfet_{m'n'}^{(j)},\ud S =
\pr{\pr{n(n+1)}^2 \abs{\frac{z_n^{(j)}}{kr}}^2 + n(n+1)\abs{\frac{1}{kr}\frac{\ud}{\ud(kr)}\pr{kr z_n^{(j)}}} } \delta_{m,m'}\delta_{n,n'} ,
\f] cf. \cite taylor_optical_2011, eqs. (2.4041). I suspect that this is also wrong and \f$\delta_{m,m'}\f$ should be replaced with \f$\delta_{m,-m'}\f$. \f[
\vect E = \sum_{mn} \pr{-i \pr{\wcetreg_{mn}\wfetreg_{mn} + \wcmtreg_{mn}\wfmtreg{mn}} +i \pr{\wcetout_{mn}\wfetout_{mn} + \wcmtout_{mn}\wfmtout_{mn}}}, \
\vect H = n_{ext}\sum_{mn} \pr{- \pr{\wcmtreg_{mn}\wfetreg_{mn} + \wcetreg_{mn}\wfmtreg{mn}} + \pr{\wcmtout_{mn}\wfetout_{mn} + \wcetout_{mn}\wfmtout_{mn}}},
\f] Different sign for regular/scattered waves! Also WTF are the units of \f$ n_{ext} \f$? The whole definition seems rather inconsistent.