3.9 KiB
3.9 KiB
VSWF conventions
Source | VSWF definition | E/M interrelations | VSWF norm | CS Phase | Field expansion | Radiated power | Notes |
---|---|---|---|---|---|---|---|
Kristensson I \cite kristensson_spherical_2014 | \f[ \wfkcreg, \wfkcout= \dots \f] | \f[ | |||||
\wfkcreg_{1lm} = \frac{1}{k}\nabla\times\wfkcreg_{2lm}, \ | |||||||
\wfkcreg_{2lm} = \frac{1}{k}\nabla\times\wfkcreg_{1lm}, | |||||||
\f] and analogously for outgoing waves \f$ \wfkcout \f$, eq. (2.8) onwards. | Yes, in the spherical harmonics definition, cf. sect. D.2. | \f[ | |||||
\vect E = k \sqrt{\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right), | |||||||
\ | |||||||
\vect H = \frac{k \sqrt{\eta_0\eta}}{i\eta_0\eta} \sum_n \left( \wckcreg_n \wfkcreg_n + \wckcout_n \wfkcout_n \right), | |||||||
\f] but for plane wave expansion \cite kristensson_spherical_2014 sect. 2.5 K. uses a different definition (same as in Kristensson II). | \f[ | ||||||
P = \frac{1}{2} \sum_n \left( \abs{\wckcout_n}^2 +\Re \left(\wckcout_n\wckcreg_n^{*}\right)\right) | |||||||
\f] | The \f$ \wckcreg, \wckcout \f$ coefficients have dimension \f$ \sqrt{\mathrm{W}} \f$. | ||||||
Kristensson II \cite kristensson_scattering_2016 | \f[ \wfkrreg, \wfkrout= \dots \f] | \f[ | |||||
\nabla\times\wfkrreg_{\tau n} = k\wfkrreg_{\overline{\tau} n}, | |||||||
\f] eq. (7.7) and analogously for outgoing waves \f$ \wfkrout \f$. | \f[ | ||||||
\vect E = \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right), | |||||||
\ | |||||||
\vect H = \frac{1}{i\eta_0\eta} \sum_n \left( \wckrreg_n \wfkrreg_n + \wckrout_n \wfkrout_n \right) | |||||||
\f] | \f[ | ||||||
P = \frac{1}{2k^2\eta_0\eta} \sum_n \left( \abs{\wckrout_n}^2 +\Re \left(\wckrout_n\wckrreg_n^{*}\right)\right) | |||||||
\f] | The \f$ \wckrreg, \wckrout \f$ coefficients have dimension \f$ \mathrm{V/m} \f$. | ||||||
Reid \cite reid_electromagnetism_2016 | \f[ | ||||||
\nabla\times\wfr_{lmM} = -ik\wfr_{lmN}, \ \nabla\times\wfr_{lmN} = +ik\wfr_{lmM}. | |||||||
\f] | \f[ | ||||||
\vect E = \sum_\alpha \pr{ \wcrreg_\alpha \wfrreg_\alpha + \wcrout_\alpha \wfrout_\alpha }, \ | |||||||
\vect H = \frac{1}{Z_0Z^r} \sum_\alpha \pr{ \wcrreg_\alpha \sigma_\alpha\wfrreg_\overline{\alpha} + | |||||||
\wcrout_\alpha \sigma_\alpha\wfrout_\overline{\alpha}}, | |||||||
\f] where \f$ \sigma_{lmM} = +1, \sigma_{lmN}=-1, \overline{lmM}=lmM, \overline{lmN}=lmM, \f$ cf. eq. (6). The notation is not extremely consistent throughout Reid's memo. | |||||||
Taylor \cite taylor_optical_2011 | \f[ | ||||||
\wfet_{mn}^{(j)} = \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\uvec{r} \ | |||||||
+\left[\tilde{\tau}{mn}\left(\cos\theta\right)\uvec{\theta}+i\tilde{\pi}{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}\frac{1}{kr}\frac{\ud\left(kr,z_{n}^{j}\left(kr\right)\right)}{\ud(kr)}, \ | |||||||
\wfmt_{mn}^{(j)} = \left[i\tilde{\pi}{mn}\left(\cos\theta\right)\uvec{\theta}-\tilde{\tau}{mn}\left(\cos\theta\right)\uvec{\phi}\right]e^{im\phi}z_{n}^{j}\left(kr\right) | |||||||
\f] | \f[ | ||||||
\int_{S(kr)} \wfmt_{mn}^{(j)} \wfmt_{m'n'}^{(j)},\ud S = n(n+1) \abs{z_n^{(j)}}^2 \delta_{m,m'}\delta_{n,n'} ,\ | |||||||
\int_{S(kr)} \wfet_{mn}^{(j)} \wfet_{m'n'}^{(j)},\ud S = | |||||||
\pr{\pr{n(n+1)}^2 \abs{\frac{z_n^{(j)}}{kr}}^2 + n(n+1)\abs{\frac{1}{kr}\frac{\ud}{\ud(kr)}\pr{kr z_n^{(j)}}} } \delta_{m,m'}\delta_{n,n'} , | |||||||
\f] cf. \cite taylor_optical_2011, eqs. (2.40–41). I suspect that this is also wrong and \f$\delta_{m,m'}\f$ should be replaced with \f$\delta_{m,-m'}\f$. | \f[ | ||||||
\vect E = \sum_{mn} \pr{-i \pr{\wcetreg_{mn}\wfetreg_{mn} + \wcmtreg_{mn}\wfmtreg{mn}} +i \pr{\wcetout_{mn}\wfetout_{mn} + \wcmtout_{mn}\wfmtout_{mn}}}, \ | |||||||
\vect H = n_{ext}\sum_{mn} \pr{- \pr{\wcmtreg_{mn}\wfetreg_{mn} + \wcetreg_{mn}\wfmtreg{mn}} + \pr{\wcmtout_{mn}\wfetout_{mn} + \wcetout_{mn}\wfmtout_{mn}}}, | |||||||
\f] | Different sign for regular/scattered waves! Also WTF are the units of \f$ n_{ext} \f$? The whole definition seems rather inconsistent. |